咨询与建议

限定检索结果

文献类型

  • 144 篇 期刊文献
  • 3 篇 会议

馆藏范围

  • 147 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 147 篇 工学
    • 144 篇 电气工程
    • 144 篇 控制科学与工程
    • 4 篇 计算机科学与技术...
    • 3 篇 仪器科学与技术
    • 1 篇 力学(可授工学、理...
    • 1 篇 机械工程
    • 1 篇 测绘科学与技术
    • 1 篇 石油与天然气工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 软件工程
    • 1 篇 生物工程
  • 3 篇 理学
    • 2 篇 化学
    • 2 篇 生物学
    • 1 篇 地球物理学
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 147 篇 segmentation and...
  • 144 篇 object detection
  • 39 篇 deep learning fo...
  • 20 篇 semantic scene u...
  • 18 篇 computer vision ...
  • 15 篇 mapping
  • 15 篇 rgb-d perception
  • 14 篇 deep learning in...
  • 14 篇 feature extracti...
  • 12 篇 three-dimensiona...
  • 11 篇 robots
  • 10 篇 task analysis
  • 10 篇 sensor fusion
  • 10 篇 point cloud comp...
  • 10 篇 computer vision ...
  • 9 篇 data sets for ro...
  • 9 篇 image segmentati...
  • 9 篇 perception for g...
  • 9 篇 training
  • 7 篇 cameras

机构

  • 4 篇 swiss fed inst t...
  • 4 篇 univ bonn d-5311...
  • 3 篇 google ch-8002 z...
  • 3 篇 univ penn grasp ...
  • 2 篇 univ michigan ro...
  • 2 篇 univ oxford dept...
  • 2 篇 univ freiburg de...
  • 2 篇 czech tech univ ...
  • 2 篇 univ chinese aca...
  • 2 篇 hamburg univ tec...
  • 2 篇 shanghai jiao to...
  • 2 篇 georgia inst tec...
  • 2 篇 kth royal inst t...
  • 2 篇 carnegie mellon ...
  • 2 篇 tech univ munich...
  • 2 篇 hong kong univ s...
  • 2 篇 stanford univ st...
  • 2 篇 univ calif san d...
  • 2 篇 zhejiang univ st...
  • 2 篇 zhejiang univ in...

作者

  • 5 篇 siegwart roland
  • 4 篇 behley jens
  • 4 篇 tombari federico
  • 4 篇 stachniss cyrill
  • 4 篇 jensfelt patric
  • 3 篇 kumar vijay
  • 3 篇 cadena cesar
  • 3 篇 nieto juan
  • 3 篇 liu ming
  • 3 篇 kooij julian f. ...
  • 3 篇 taylor camillo j...
  • 3 篇 valada abhinav
  • 3 篇 held david
  • 2 篇 miller ian d.
  • 2 篇 chli margarita
  • 2 篇 moe kris s.
  • 2 篇 keipour azarakhs...
  • 2 篇 qin fangbo
  • 2 篇 jia mingkai
  • 2 篇 thiel marko

语言

  • 147 篇 英文
检索条件"主题词=segmentation and categorization"
147 条 记 录,以下是1-10 订阅
Search3D: Hierarchical Open-Vocabulary 3D segmentation
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第3期10卷 2558-2565页
作者: Takmaz, Ayca Delitzas, Alexandros Sumner, Robert W. Engelmann, Francis Wald, Johanna Tombari, Federico Swiss Fed Inst Technol CH-8092 Zurich Switzerland Google CH-8002 Zurich Switzerland Stanford Univ Stanford CA 94305 USA
Open-vocabulary 3D segmentation enables exploration of 3D spaces using free-form text descriptions. Existing methods for open-vocabulary 3D instance segmentation primarily focus on identifying object-level instances b... 详细信息
来源: 评论
How to Relieve Distribution Shifts in Semantic segmentation for Off-Road Environments
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第5期10卷 4500-4507页
作者: Hwang, Ji-Hoon Kim, Daeyoung Yoon, Hyung-Suk Kim, Dong-Wook Seo, Seung-Woo Seoul Natl Univ Dept Elect & Comp Engn ASRI INMC Seoul 151742 South Korea Seoul Natl Univ Inst Engn Res Seoul 151742 South Korea
Semantic segmentation is crucial for autonomous navigation in off-road environments, enabling precise classification of surroundings to identify traversable regions. However, distinctive factors inherent to off-road c... 详细信息
来源: 评论
SCDA-Net: Structure Completion and Density Awareness Network for LiDAR-Based 3D Object Detection
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第5期10卷 4268-4275页
作者: Wu, Shuwen Yang, Jinfu Ma, Jiaqi Zhang, Shaochen Hao, Tianhao Li, Mingai Beijing Univ Technol Sch Informat Sci & Technol Beijing 100124 Peoples R China
As a fundamental task in various application scenarios, including autonomous driving and mobile robotic systems, 3D object detection has received extensive attention from researchers in both academia and industry. How... 详细信息
来源: 评论
Automatic Identification of Individual African Leopards in Unlabeled Camera Trap Images
收藏 引用
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 2025年 22卷 2460-2471页
作者: Guo, Cheng Miguel, Agnieszka Maciejewski, Anthony A. Colorado State Univ Dept Elect & Comp Engn Ft Collins CO 80523 USA Seattle Univ Dept Elect & Com puter Engn Seattle WA 98122 USA
This article describes an algorithm to solve the real-world animal identification problem, i.e., determine the unknown number of K individual animals in a dataset of N unlabeled camera-trap images of African leopards,... 详细信息
来源: 评论
AutoSelecter: Efficient Synthetic Nighttime Images Make Object Detector Stronger
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第5期10卷 4660-4665页
作者: Chao, Meng Wang, Mengjie Shi, Wenxiu Zhu, Huiping Song, Zhang Rui, Zhang Ming, Yang Shanghai Jiao Tong Univ Shanghai 200240 Peoples R China Z One Technol Co Ltd Shanghai 201199 Peoples R China
Object detection has achieved significant advancements despite the challenges posed by adverse conditions like low-light nighttime environments, where annotated data is not only scarce but also challenging to accurate... 详细信息
来源: 评论
BiCo-Fusion: Bidirectional Complementary LiDAR-Camera Fusion for Semantic- and Spatial-Aware 3D Object Detection
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第2期10卷 1457-1464页
作者: Song, Yang Wang, Lin Hong Kong Univ Sci & Technol Guangzhou AI Thrust Guangzhou 511458 Guangdong Peoples R China Nanyang Technol Univ NTU Sch Elect & Elect Engn EEE Singapore 639798 Singapore
3D object detection is an important task that has been widely applied in autonomous driving. To perform this task, a new trend is to fuse multi-modal inputs, i.e., LiDAR and camera. Under such a trend, recent methods ... 详细信息
来源: 评论
Bio-Inspired Electrostatic Detection Method for Threat Perception in Autonomous Platforms
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第4期10卷 3692-3699页
作者: Man, Menghua Chen, Yazhou Cai, Na Ma, Guilei Wei, Ming Army Engn Univ PLA Shijiazhuang 050003 Peoples R China
Autonomous platforms have been widely adopted in both civilian and military contexts, achieving notable success. However, their energy resources, computational power, payload capacity, and cost are constrained and int... 详细信息
来源: 评论
Trimodal Navigable Region segmentation Model: Grounding Navigation Instructions in Urban Areas
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2024年 第5期9卷 4162-4169页
作者: Hosomi, Naoki Hatanaka, Shumpei Iioka, Yui Yang, Wei Kuyo, Katsuyuki Misu, Teruhisa Yamada, Kentaro Sugiura, Komei Keio Univ Kanagawa 2238522 Japan Honda Res & Dev Co Ltd Tokyo 1076238 Japan Honda Res Inst USA Inc San Jose CA 95134 USA
In this study, we develop a model that enables mobilities to have more friendly interactions with users. Specifically, we focus on the referring navigable regions task in which a model grounds navigable regions of the... 详细信息
来源: 评论
SHENRON - Scalable, High Fidelity and EfficieNt Radar SimulatiON
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2024年 第2期9卷 1644-1651页
作者: Bansal, Kshitiz Reddy, Gautham Bharadia, Dinesh Univ Calif San Diego La Jolla CA 92093 USA
Radar Simulations have become an essential tool in radar algorithm development and testing due to the lack of available high-resolution radar datasets and enormous difficulty in acquiring real-world data. However, sim... 详细信息
来源: 评论
Object Importance Estimation Using Counterfactual Reasoning for Intelligent Driving
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2024年 第4期9卷 3648-3655页
作者: Gupta, Pranay Biswas, Abhijat Admoni, Henny Held, David Carnegie Mellon Univ Robot Inst Pittsburgh PA 15213 USA
The ability to identify important objects in a complex and dynamic driving environment is essential for autonomous driving agents to make safe and efficient driving decisions. It also helps assistive driving systems d... 详细信息
来源: 评论