咨询与建议

限定检索结果

文献类型

  • 144 篇 期刊文献
  • 3 篇 会议

馆藏范围

  • 147 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 147 篇 工学
    • 144 篇 电气工程
    • 144 篇 控制科学与工程
    • 4 篇 计算机科学与技术...
    • 3 篇 仪器科学与技术
    • 1 篇 力学(可授工学、理...
    • 1 篇 机械工程
    • 1 篇 测绘科学与技术
    • 1 篇 石油与天然气工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 软件工程
    • 1 篇 生物工程
  • 3 篇 理学
    • 2 篇 化学
    • 2 篇 生物学
    • 1 篇 地球物理学
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 147 篇 segmentation and...
  • 144 篇 object detection
  • 39 篇 deep learning fo...
  • 20 篇 semantic scene u...
  • 18 篇 computer vision ...
  • 15 篇 mapping
  • 15 篇 rgb-d perception
  • 14 篇 deep learning in...
  • 14 篇 feature extracti...
  • 12 篇 three-dimensiona...
  • 11 篇 robots
  • 10 篇 task analysis
  • 10 篇 sensor fusion
  • 10 篇 point cloud comp...
  • 10 篇 computer vision ...
  • 9 篇 data sets for ro...
  • 9 篇 image segmentati...
  • 9 篇 perception for g...
  • 9 篇 training
  • 7 篇 cameras

机构

  • 4 篇 swiss fed inst t...
  • 4 篇 univ bonn d-5311...
  • 3 篇 google ch-8002 z...
  • 3 篇 univ penn grasp ...
  • 2 篇 univ michigan ro...
  • 2 篇 univ oxford dept...
  • 2 篇 univ freiburg de...
  • 2 篇 czech tech univ ...
  • 2 篇 univ chinese aca...
  • 2 篇 hamburg univ tec...
  • 2 篇 shanghai jiao to...
  • 2 篇 georgia inst tec...
  • 2 篇 kth royal inst t...
  • 2 篇 carnegie mellon ...
  • 2 篇 tech univ munich...
  • 2 篇 hong kong univ s...
  • 2 篇 stanford univ st...
  • 2 篇 univ calif san d...
  • 2 篇 zhejiang univ st...
  • 2 篇 zhejiang univ in...

作者

  • 5 篇 siegwart roland
  • 4 篇 behley jens
  • 4 篇 tombari federico
  • 4 篇 stachniss cyrill
  • 4 篇 jensfelt patric
  • 3 篇 kumar vijay
  • 3 篇 cadena cesar
  • 3 篇 nieto juan
  • 3 篇 liu ming
  • 3 篇 kooij julian f. ...
  • 3 篇 taylor camillo j...
  • 3 篇 valada abhinav
  • 3 篇 held david
  • 2 篇 miller ian d.
  • 2 篇 chli margarita
  • 2 篇 moe kris s.
  • 2 篇 keipour azarakhs...
  • 2 篇 qin fangbo
  • 2 篇 jia mingkai
  • 2 篇 thiel marko

语言

  • 147 篇 英文
检索条件"主题词=segmentation and categorization"
147 条 记 录,以下是91-100 订阅
排序:
HD Map Update for Autonomous Driving With Crowdsourced Data
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2021年 第2期6卷 1895-1901页
作者: Kim, Kitae Cho, Soohyun Chung, Woojin Korea Univ Dept Mech Engn Seoul 07981 South Korea
Current self-driving cars can perform precise localization and generate collision-free trajectories using high definition (HD) maps which provide accurate road information. Therefore, keeping HD maps up to date is imp... 详细信息
来源: 评论
Visual Object Recognition in Indoor Environments Using Topologically Persistent Features
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2021年 第4期6卷 7509-7516页
作者: Samani, Ekta U. Yang, Xingjian Banerjee, Ashis G. Univ Washington Dept Mech Engn Seattle WA 98195 USA Univ Washington Dept Ind & Syst Engn Seattle WA 98195 USA
Object recognition in unseen indoor environments remains a challenging problem for visual perception of mobile robots. In this letter, we propose the use of topologically persistent features, which rely on the objects... 详细信息
来源: 评论
Unsupervised Image segmentation by Mutual Information Maximization and Adversarial Regularization
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2021年 第4期6卷 6931-6938页
作者: Mirsadeghi, S. Ehsan Royat, Ali Rezatofighi, Hamid Amirkabir Univ Technol Fac Elect Engn Janat Abad Tehran *** Iran Sharif Univ Technol Fac Elect Engn Tehran Iran Monash Univ Fac Informat Technol Dept Data Sci & AI Melbourne Vic 3800 Australia
Semantic segmentation is one of the basic, yet essential scene understanding tasks for an autonomous agent. The recent developments in supervised machine learning and neural networks have enjoyed great success in enha... 详细信息
来源: 评论
PennSyn2Real: Training Object Recognition Models Without Human Labeling
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2021年 第3期6卷 5032-5039页
作者: Nguyen, Ty Miller, Ian D. Cohen, Avi Thakur, Dinesh Guru, Arjun Prasad, Shashank Taylor, Camillo J. Chaudhari, Pratik Kumar, Vijay Univ Penn Grasp Lab Philadelphia PA 19104 USA Amazon Seattle WA USA
Scalable training data generation is a critical problem in deep learning. We propose PennSyn2Real - a photo-realistic synthetic dataset consisting of more than 100 000 4K images of more than 20 types of micro aerial v... 详细信息
来源: 评论
GEM: Glare or Gloom, I Can Still See You - End-to-End Multi-Modal Object Detection
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2021年 第4期6卷 6321-6328页
作者: Mazhar, Osama Babuska, Robert Kober, Jens Delft Univ Technol Cognit Robot Dept NL-2628 CD Delft Netherlands Czech Tech Univ Czech Inst Informat Robot & Cybernet Prague 16636 Czech Republic
Deep neural networks designed for vision tasks are often prone to failure when they encounter environmental conditions not covered by the training data. Single-modal strategies are insufficient when the sensor fails t... 详细信息
来源: 评论
LaneAF: Robust Multi-Lane Detection With Affinity Fields
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2021年 第4期6卷 7477-7484页
作者: Abualsaud, Hala Liu, Sean Lu, David B. Situ, Kenny Rangesh, Akshay Trivedi, Mohan M. Univ Calif San Diego Lab Intelligent & Safe Automobiles San Diego CA 92092 USA
This study presents an approach to lane detection involving the prediction of binary segmentation masks and per-pixel affinity fields. These affinity fields, along with the binary masks, can then be used to cluster la... 详细信息
来源: 评论
Target-Style-Aware Unsupervised Domain Adaptation for Object Detection
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2021年 第2期6卷 3825-3832页
作者: Yun, Woo-han Han, ByungOk Lee, Jaeyeon Kim, Jaehong Kim, Junmo Korea Adv Inst Sci & Technol Robot Program Daejeon 34129 South Korea ETRI Intelligent Robot Res Div Daejeon 34129 South Korea Korea Adv Inst Sci & Technol Sch Elect Engn Daejeon 34141 South Korea
Vision modules running on mobility platforms, such as robots and cars, often face challenging situations such as a domain shift where the distributions of training (source) data and test (target) data are different. T... 详细信息
来源: 评论
LiDARTag: A Real-Time Fiducial Tag System for Point Clouds
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2021年 第3期6卷 4875-4882页
作者: Huang, Jiunn-Kai Wang, Shoutian Ghaffari, Maani Grizzle, Jessy W. Univ Michigan Robot Inst Ann Arbor MI 48109 USA
Image-based fiducial markers are useful in problems such as object tracking in cluttered or textureless environments, camera (and multi-sensor) calibration tasks, and vision-based simultaneous localization and mapping... 详细信息
来源: 评论
Hough2Map - Iterative Event-Based Hough Transform for High-Speed Railway Mapping
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2021年 第2期6卷 2745-2752页
作者: Tschopp, Florian von Einem, Cornelius Cramariuc, Andrei Hug, David Palmer, Andrew William Siegwart, Roland Chli, Margarita Nieto, Juan Swiss Fed Inst Technol Autonomous Syst Lab CH-8092 Zurich Switzerland Swiss Fed Inst Technol Vis Robot Lab CH-8092 Zurich Switzerland Siemens Mobil D-12489 Berlin Germany
To cope with the growing demand for transportation on the railway system, accurate, robust, and high-frequency positioning is required to enable a safe and efficient utilization of the existing railway infrastructure.... 详细信息
来源: 评论
Robust Data Association for Multi-Object Detection in Maritime Environments Using Camera and Radar Measurements
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2021年 第3期6卷 5865-5872页
作者: Kim, Keunhwan Kim, Jonghwi Kim, Jinwhan Korea Elect Technol Inst Intelligent Robot Res Ctr Bucheon 14502 South Korea Korea Adv Inst Sci & Technol Dept Mech Engn Daejeon 34141 South Korea
This letter presents a robust data association method for fusing camera and marine radar measurements in order to automatically detect surface ships and determine their locations with respect to the observing ship. In... 详细信息
来源: 评论