咨询与建议

限定检索结果

文献类型

  • 144 篇 期刊文献
  • 3 篇 会议

馆藏范围

  • 147 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 147 篇 工学
    • 144 篇 电气工程
    • 144 篇 控制科学与工程
    • 4 篇 计算机科学与技术...
    • 3 篇 仪器科学与技术
    • 1 篇 力学(可授工学、理...
    • 1 篇 机械工程
    • 1 篇 测绘科学与技术
    • 1 篇 石油与天然气工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 软件工程
    • 1 篇 生物工程
  • 3 篇 理学
    • 2 篇 化学
    • 2 篇 生物学
    • 1 篇 地球物理学
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 147 篇 segmentation and...
  • 144 篇 object detection
  • 39 篇 deep learning fo...
  • 20 篇 semantic scene u...
  • 18 篇 computer vision ...
  • 15 篇 mapping
  • 15 篇 rgb-d perception
  • 14 篇 deep learning in...
  • 14 篇 feature extracti...
  • 12 篇 three-dimensiona...
  • 11 篇 robots
  • 10 篇 task analysis
  • 10 篇 sensor fusion
  • 10 篇 point cloud comp...
  • 10 篇 computer vision ...
  • 9 篇 data sets for ro...
  • 9 篇 image segmentati...
  • 9 篇 perception for g...
  • 9 篇 training
  • 7 篇 cameras

机构

  • 4 篇 swiss fed inst t...
  • 4 篇 univ bonn d-5311...
  • 3 篇 google ch-8002 z...
  • 3 篇 univ penn grasp ...
  • 2 篇 univ michigan ro...
  • 2 篇 univ oxford dept...
  • 2 篇 univ freiburg de...
  • 2 篇 czech tech univ ...
  • 2 篇 univ chinese aca...
  • 2 篇 hamburg univ tec...
  • 2 篇 shanghai jiao to...
  • 2 篇 georgia inst tec...
  • 2 篇 kth royal inst t...
  • 2 篇 carnegie mellon ...
  • 2 篇 tech univ munich...
  • 2 篇 hong kong univ s...
  • 2 篇 stanford univ st...
  • 2 篇 univ calif san d...
  • 2 篇 zhejiang univ st...
  • 2 篇 zhejiang univ in...

作者

  • 5 篇 siegwart roland
  • 4 篇 behley jens
  • 4 篇 tombari federico
  • 4 篇 stachniss cyrill
  • 4 篇 jensfelt patric
  • 3 篇 kumar vijay
  • 3 篇 cadena cesar
  • 3 篇 nieto juan
  • 3 篇 liu ming
  • 3 篇 kooij julian f. ...
  • 3 篇 taylor camillo j...
  • 3 篇 valada abhinav
  • 3 篇 held david
  • 2 篇 miller ian d.
  • 2 篇 chli margarita
  • 2 篇 moe kris s.
  • 2 篇 keipour azarakhs...
  • 2 篇 qin fangbo
  • 2 篇 jia mingkai
  • 2 篇 thiel marko

语言

  • 147 篇 英文
检索条件"主题词=segmentation and categorization"
147 条 记 录,以下是111-120 订阅
排序:
Smartphone Zombie Detection From LiDAR Point Cloud for Mobile Robot Safety
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2020年 第2期5卷 2256-2263页
作者: Wu, Jiaxu Tamura, Yusuke Wang, Yusheng Woo, Hanwool Moro, Alessandro Yamashita, Atsushi Asama, Hajime Univ Tokyo Grad Sch Engn Dept Precis Engn Tokyo 1138656 Japan Akita Prefectural Univ Dept Intelligent Mechatron Akita 0150055 Japan
Awareness of surrounding and prediction of dangerous situations is essential for autonomous mobile robots, especially during navigation in a human-populated environment. To cope with safety issues, state-of-the-art wo... 详细信息
来源: 评论
Fast Panoptic segmentation Network
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2020年 第2期5卷 1742-1749页
作者: de Geus, Daan Meletis, Panagiotis Dubbelman, Gijs Eindhoven Univ Technol Dept Elect Engn SPS VCA Grp Mobile Percept Syst Res lab NL-5600 MB Eindhoven Netherlands
In this work, we present an end-to-end network for fast panoptic segmentation. This network, called Fast Panoptic segmentation Network (FPSNet), does not require computationally costly instance mask predictions or rul... 详细信息
来源: 评论
Addressing the Sim2Real Gap in Robotic 3-D Object Classification
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2020年 第2期5卷 407-413页
作者: Weibel, Jean-Baptiste Patten, Timothy Vincze, Markus TU Wien Automat & Control Inst Vis Robot Lab A-1040 Vienna Austria
Object classification with 3D data is an essential component of any scene understanding method. It has gained significant interest in a variety of communities, most notably in robotics and computer graphics. While the... 详细信息
来源: 评论
CNN Based Road User Detection Using the 3D Radar Cube
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2020年 第2期5卷 1263-1270页
作者: Palffy, Andras Dong, Jiaao Kooij, Julian F. P. Gavrila, Dariu M. Delft Univ Technol Intelligent Vehicles Grp NL-2628 Delft Netherlands
This letter presents a novel radar based, single-frame, multi-class detection method for moving road users (pedestrian, cyclist, car), which utilizes low-level radar cube data. The method provides class information bo... 详细信息
来源: 评论
Modeling of Architectural Components for Large-Scale Indoor Spaces From Point Cloud Measurements
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2020年 第3期5卷 3830-3837页
作者: Lim, Gahyeon Oh, Youjin Kim, Dongwoo Jun, ChangHyun Kang, Jaehyeon Doh, Nakju Korea Univ Sch Elect Engn Seoul 02841 South Korea TeeLabs Seoul 02857 South Korea SK Telecom Seoul 04539 South Korea Korea Inst Ind Technol Robot R&D Grp Ansan 15588 South Korea
In this letter, we propose a method to model architectural components in large-scale indoor spaces from point cloud measurements. The proposed method enables the modeling of curved surfaces, cylindrical pillars, and s... 详细信息
来源: 评论
RGB-D Recognition and Localization of Cases for Robotic Depalletizing in Supermarkets
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2020年 第4期5卷 6233-6238页
作者: Arpenti, Pierluigi Caccavale, Riccardo Paduano, Gianmarco Fontanelli, Giuseppe Andrea Lippiello, Vincenzo Villani, Luigi Siciliano, Bruno Univ Napoli Federico II Dept Elect Engn & Informat Technol I-80138 Naples Italy
Integrating a robotic system into the depalletizing process of a supermarket demands a high level of autonomy, based on strong perceptive capabilities. This letter presents a system for detection, recognition, and loc... 详细信息
来源: 评论
A Unified NMPC Scheme for MAVs Navigation With 3D Collision Avoidance Under Position Uncertainty
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2020年 第4期5卷 5740-5747页
作者: Mansouri, Sina Sharif Kanellakis, Christoforos Lindqvist, Bjorn Pourkamali-Anaraki, Farhad Agha-mohammadi, Ali-akbar Burdick, Joel Nikolakopoulos, George Lulea Univ Technol Dept Comp Elect & Space Engn Robot Team S-97187 Lulea Sweden Univ Massachusetts Dept Comp Sci Lowell MA 01854 USA CALTECH Jet Prop Lab Pasadena CA 91109 USA CALTECH Div Engn & Appl Sci Pasadena CA 91125 USA
This letter proposes a novel Nonlinear Model Predictive Control (NMPC) framework for Micro Aerial Vehicle (MAV) autonomous navigation in indoor enclosed environments. The introduced framework allows us to consider the... 详细信息
来源: 评论
Unseen Salient Object Discovery for Monocular Robot Vision
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2020年 第2期5卷 1484-1491页
作者: Chan, Darren M. Riek, Laurel D. Univ Calif San Diego La Jolla CA 92093 USA
A key challenge in robotics is the capability to perceive unseen objects, which can improve a robot's ability to learn from and adapt to its surroundings. One approach is to employ unsupervised, salient object dis... 详细信息
来源: 评论
Learning to Optimally Segment Point Clouds
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2020年 第2期5卷 875-882页
作者: Hu, Peiyun Held, David Ramanan, Deva Carnegie Mellon Univ Inst Robot Pittsburgh PA 15213 USA Argo AI Pittsburgh PA 15213 USA
We focus on the problem of class-agnostic instance segmentation of LiDAR point clouds. We propose an approach that combines graph-theoretic search with data-driven learning: it searches over a set of candidate segment... 详细信息
来源: 评论
MinneApple: A Benchmark Dataset for Apple Detection and segmentation
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2020年 第2期5卷 852-858页
作者: Hani, Nicolai Roy, Pravakar Isler, Volkan Univ Minnesota Dept Comp Sci & Engn Minneapolis MN 55455 USA
In this work, we present a new dataset to advance the state-of-the-art in fruit detection, segmentation, and counting in orchard environments. While there has been significant recent interest in solving these problems... 详细信息
来源: 评论