咨询与建议

限定检索结果

文献类型

  • 144 篇 期刊文献
  • 3 篇 会议

馆藏范围

  • 147 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 147 篇 工学
    • 144 篇 电气工程
    • 144 篇 控制科学与工程
    • 4 篇 计算机科学与技术...
    • 3 篇 仪器科学与技术
    • 1 篇 力学(可授工学、理...
    • 1 篇 机械工程
    • 1 篇 测绘科学与技术
    • 1 篇 石油与天然气工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 软件工程
    • 1 篇 生物工程
  • 3 篇 理学
    • 2 篇 化学
    • 2 篇 生物学
    • 1 篇 地球物理学
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 147 篇 segmentation and...
  • 144 篇 object detection
  • 39 篇 deep learning fo...
  • 20 篇 semantic scene u...
  • 18 篇 computer vision ...
  • 15 篇 mapping
  • 15 篇 rgb-d perception
  • 14 篇 deep learning in...
  • 14 篇 feature extracti...
  • 12 篇 three-dimensiona...
  • 11 篇 robots
  • 10 篇 task analysis
  • 10 篇 sensor fusion
  • 10 篇 point cloud comp...
  • 10 篇 computer vision ...
  • 9 篇 data sets for ro...
  • 9 篇 image segmentati...
  • 9 篇 perception for g...
  • 9 篇 training
  • 7 篇 cameras

机构

  • 4 篇 swiss fed inst t...
  • 4 篇 univ bonn d-5311...
  • 3 篇 google ch-8002 z...
  • 3 篇 univ penn grasp ...
  • 2 篇 univ michigan ro...
  • 2 篇 univ oxford dept...
  • 2 篇 univ freiburg de...
  • 2 篇 czech tech univ ...
  • 2 篇 univ chinese aca...
  • 2 篇 hamburg univ tec...
  • 2 篇 shanghai jiao to...
  • 2 篇 georgia inst tec...
  • 2 篇 kth royal inst t...
  • 2 篇 carnegie mellon ...
  • 2 篇 tech univ munich...
  • 2 篇 hong kong univ s...
  • 2 篇 stanford univ st...
  • 2 篇 univ calif san d...
  • 2 篇 zhejiang univ st...
  • 2 篇 zhejiang univ in...

作者

  • 5 篇 siegwart roland
  • 4 篇 behley jens
  • 4 篇 tombari federico
  • 4 篇 stachniss cyrill
  • 4 篇 jensfelt patric
  • 3 篇 kumar vijay
  • 3 篇 cadena cesar
  • 3 篇 nieto juan
  • 3 篇 liu ming
  • 3 篇 kooij julian f. ...
  • 3 篇 taylor camillo j...
  • 3 篇 valada abhinav
  • 3 篇 held david
  • 2 篇 miller ian d.
  • 2 篇 chli margarita
  • 2 篇 moe kris s.
  • 2 篇 keipour azarakhs...
  • 2 篇 qin fangbo
  • 2 篇 jia mingkai
  • 2 篇 thiel marko

语言

  • 147 篇 英文
检索条件"主题词=segmentation and categorization"
147 条 记 录,以下是141-150 订阅
排序:
Failing to Learn: Autonomously Identifying Perception Failures for Self-Driving Cars
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2018年 第4期3卷 3860-3867页
作者: Ramanagopal, Manikandasriram Srinivasan Anderson, Cyrus Vasudevan, Ram Johnson-Roberson, Matthew Univ Michigan Robot Inst Ann Arbor MI 48109 USA Univ Michigan Mech Engn Ann Arbor MI 48109 USA Univ Michigan Dept Naval Architecture & Marine Engn Ann Arbor MI 48109 USA
One of the major open challenges in self-driving cars is the ability to detect cars and pedestrians to safely navigate in the world. Deep learning-based object detector approaches have enabled great advances in using ... 详细信息
来源: 评论
Analysis of Morphology-Based Features for Classification of Crop and Weeds in Precision Agriculture
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2018年 第4期3卷 2950-2956页
作者: Bosilj, Petra Duckett, Tom Cielniak, Grzegorz Univ Lincoln Sch Comp Sci Lincoln Ctr Autonomous Syst Lincoln LN6 7TS England
Determining the types of vegetation present in an image is a core step in many precision agriculture tasks. In this letter, we focus on pixel-based approaches for classification of crops versus weeds, especially for c... 详细信息
来源: 评论
Automatic segmentation of Tree Structure From Point Cloud Data
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2018年 第4期3卷 3043-3050页
作者: Digumarti, Sundara Tejaswi Nieto, Juan Cadena, Cesar Siegwart, Roland Beardsley, Paul Swiss Fed Inst Technol Autonomous Syst Lab CH-8092 Zurich Switzerland Disney Res CH-8006 Zurich Switzerland
Methods for capturing and modeling vegetation, such as trees or plants, typically distinguish between two components-branch skeleton and foliage. Current methods do not provide quantitatively accurate tree structure a... 详细信息
来源: 评论
Recurrent-OctoMap: Learning State-Based Map Refinement for Long-Term Semantic Mapping With 3-D-Lidar Data
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2018年 第4期3卷 3749-3756页
作者: Sun, Li Yan, Zhi Zaganidis, Anestis Zhao, Cheng Duckett, Tom Univ Lincoln L CAS Lincoln LN6 7TS England UTBM Lab Elect Informat & Image CNRS F-90010 Belfort France
This letter presents a novel semantic mapping approach, Recurrent-OctoMap, learned from long-term three-dimensional (3-D) Lidar data. Most existing semantic mapping approaches focus on improving semantic understanding... 详细信息
来源: 评论
Noise-Resistant Deep Learning for Object Classification in Three-Dimensional Point Clouds Using a Point Pair Descriptor
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2018年 第2期3卷 865-872页
作者: Bobkov, Dmytro Chen, Sili Jian, Ruiqing Iqbal, Muhammad Z. Steinbach, Eckehard Tech Univ Munich Chair Media Technol D-80333 Munich Germany Baidu Inc Augmented Real Lab Beijing 100193 Peoples R China
Object retrieval and classification in point cloud data are challenged by noise, irregular sampling density, and occlusion. To address this issue, we propose a point pair descriptor that is robust to noise and occlusi... 详细信息
来源: 评论
Motion-Based Object segmentation Based on Dense RGB-D Scene Flow
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2018年 第4期3卷 3797-3804页
作者: Shao, Lin Shah, Parth Dwaracherla, Vikranth Bohg, Jeannette Stanford Univ Stanford CA 94305 USA
Given two consecutive RGB-D images, we propose a model that estimates a dense three-dimensional (3D) motion field, also known as scene flow. We take advantage of the fact that in robot manipulation scenarios, scenes o... 详细信息
来源: 评论
Persistent Anytime Learning of Objects from Unseen Classes
Persistent Anytime Learning of Objects from Unseen Classes
收藏 引用
25th IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
作者: Denninger, Maximilian Triebel, Rudolph German Aerosp Ctr DLR Dept Percept & Cognit Inst Robot & Mechatron Oberpfaffenhofen Germany Tech Univ Munich Dept Comp Sci Munich Germany
We present a fast and very effective method for object classification that is particularly suited for robotic applications such as grasping and semantic mapping. Our approach is based on a Random Forest classifier tha... 详细信息
来源: 评论