咨询与建议

限定检索结果

文献类型

  • 144 篇 期刊文献
  • 3 篇 会议

馆藏范围

  • 147 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 147 篇 工学
    • 144 篇 电气工程
    • 144 篇 控制科学与工程
    • 4 篇 计算机科学与技术...
    • 3 篇 仪器科学与技术
    • 1 篇 力学(可授工学、理...
    • 1 篇 机械工程
    • 1 篇 测绘科学与技术
    • 1 篇 石油与天然气工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 软件工程
    • 1 篇 生物工程
  • 3 篇 理学
    • 2 篇 化学
    • 2 篇 生物学
    • 1 篇 地球物理学
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 147 篇 segmentation and...
  • 144 篇 object detection
  • 39 篇 deep learning fo...
  • 20 篇 semantic scene u...
  • 18 篇 computer vision ...
  • 15 篇 mapping
  • 15 篇 rgb-d perception
  • 14 篇 deep learning in...
  • 14 篇 feature extracti...
  • 12 篇 three-dimensiona...
  • 11 篇 robots
  • 10 篇 task analysis
  • 10 篇 sensor fusion
  • 10 篇 point cloud comp...
  • 10 篇 computer vision ...
  • 9 篇 data sets for ro...
  • 9 篇 image segmentati...
  • 9 篇 perception for g...
  • 9 篇 training
  • 7 篇 cameras

机构

  • 4 篇 swiss fed inst t...
  • 4 篇 univ bonn d-5311...
  • 3 篇 google ch-8002 z...
  • 3 篇 univ penn grasp ...
  • 2 篇 univ michigan ro...
  • 2 篇 univ oxford dept...
  • 2 篇 univ freiburg de...
  • 2 篇 czech tech univ ...
  • 2 篇 univ chinese aca...
  • 2 篇 hamburg univ tec...
  • 2 篇 shanghai jiao to...
  • 2 篇 georgia inst tec...
  • 2 篇 kth royal inst t...
  • 2 篇 carnegie mellon ...
  • 2 篇 tech univ munich...
  • 2 篇 hong kong univ s...
  • 2 篇 stanford univ st...
  • 2 篇 univ calif san d...
  • 2 篇 zhejiang univ st...
  • 2 篇 zhejiang univ in...

作者

  • 5 篇 siegwart roland
  • 4 篇 behley jens
  • 4 篇 tombari federico
  • 4 篇 stachniss cyrill
  • 4 篇 jensfelt patric
  • 3 篇 kumar vijay
  • 3 篇 cadena cesar
  • 3 篇 nieto juan
  • 3 篇 liu ming
  • 3 篇 kooij julian f. ...
  • 3 篇 taylor camillo j...
  • 3 篇 valada abhinav
  • 3 篇 held david
  • 2 篇 miller ian d.
  • 2 篇 chli margarita
  • 2 篇 moe kris s.
  • 2 篇 keipour azarakhs...
  • 2 篇 qin fangbo
  • 2 篇 jia mingkai
  • 2 篇 thiel marko

语言

  • 147 篇 英文
检索条件"主题词=segmentation and categorization"
147 条 记 录,以下是71-80 订阅
排序:
Automatic Labeling to Generate Training Data for Online LiDAR-Based Moving Object segmentation
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第3期7卷 6107-6114页
作者: Chen, Xieyuanli Mersch, Benedikt Nunes, Lucas Marcuzzi, Rodrigo Vizzo, Ignacio Behley, Jens Stachniss, Cyrill Univ Bonn D-53115 Bonn Germany Univ Oxford Dept Engn Sci Oxford OX1 2JD England
Understanding the scene is key for autonomously navigating vehicles, and the ability to segment the surroundings online into moving and non-moving objects is a central ingredient of this task. Often, deep learning-bas... 详细信息
来源: 评论
Perceiving the Invisible: Proposal-Free Amodal Panoptic segmentation
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第4期7卷 9302-9309页
作者: Mohan, Rohit Valada, Abhinav Univ Freiburg Dept Comp Sci D-79085 Freiburg Germany
Amodal panoptic segmentation aims to connect the perception of the world to its cognitive understanding. It entails simultaneously predicting the semantic labels of visible scene regions and the entire shape of traffi... 详细信息
来源: 评论
Sem-Aug: Improving Camera-LiDAR Feature Fusion With Semantic Augmentation for 3D Vehicle Detection
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第4期7卷 9358-9365页
作者: Zhao, Lin Wang, Meiling Yue, Yufeng Beijing Inst Technol Sch Automat Beijing 100081 Peoples R China
Camera-LiDAR fusion provides precise distance measurements and fine-grained textures, making it a promising option for 3D vehicle detection in autonomous driving scenarios. Previous camera-LiDAR based 3D vehicle detec... 详细信息
来源: 评论
Keypoints-Based Deep Feature Fusion for Cooperative Vehicle Detection of Autonomous Driving
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第2期7卷 3054-3061页
作者: Yuan, Yunshuang Cheng, Hao Sester, Monika Leibniz Univ Hannover Inst Cartog & Geoinformat D-30167 Hannover Germany
Sharing collective perception messages (CPM) between vehicles is investigated to decrease occlusions so as to improve the perception accuracy and safety of autonomous driving. However, highly accurate data sharing and... 详细信息
来源: 评论
Embodied Active Domain Adaptation for Semantic segmentation via Informative Path Planning
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第4期7卷 8691-8698页
作者: Zurbruegg, Rene Blum, Hermann Cadena, Cesar Siegwart, Roland Schmid, Lukas Swiss Fed Inst Technol Autonomous Syst Lab CH-8090 Zurich Switzerland
This work presents an embodied agent that can adapt its semantic segmentation network to new indoor environments in a fully autonomous way. Because semantic segmentation networks fail to generalize well to unseen envi... 详细信息
来源: 评论
ATF-3D: Semi-Supervised 3D Object Detection With Adaptive Thresholds Filtering Based on Confidence and Distance
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第4期7卷 10573-10580页
作者: Zhang, Zehan Ji, Yang Cui, Wei Wang, Yulong Li, Hao Zhao, Xian Li, Duo Tang, Sanli Yang, Ming Tan, Wenming Pu, Shiliang Hangzhou Hikvis Digital Technol Co Ltd Hikvis Res Inst Hangzhou 310052 Peoples R China Shanghai Jiao Tong Univ Dept Automat Shanghai 200240 Peoples R China
Performance of current point cloud-based outdoor 3D object detection relies heavily on large-scale high-quality 3D annotations. However, such annotations are usually expensive to collect and outdoor scenes easily accu... 详细信息
来源: 评论
OSSID: Online Self-Supervised Instance Detection by (And For) Pose Estimation
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第2期7卷 3022-3029页
作者: Gu, Qiao Okorn, Brian Held, David Univ Toronto Dept Comp Sci Toronto ON M5S 1A1 Canada Carnegie Mellon Univ Robot Inst Pittsburgh PA 15214 USA
Real-time object pose estimation is necessary for many robot manipulation algorithms. However, state-of-the-art methods for object pose estimation are trained for a specific set of objects;these methods thus need to b... 详细信息
来源: 评论
Self-Supervised Learning for Panoptic segmentation of Multiple Fruit Flower Species
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第4期7卷 12387-12394页
作者: Siddique, Abubakar Tabb, Amy Medeiros, Henry Marquette Univ Dept Elect & Comp Engn Milwaukee WI 53233 USA USDA Kearneysville WV 25430 USA Univ Florida Dept Agr & Biol Engn Gainesville FL 32611 USA
Convolutional neural networks trained using manually generated labels are commonly used for semantic or instance segmentation. In precision agriculture, automated flower detection methods use supervised models and pos... 详细信息
来源: 评论
See Eye to Eye: A Lidar-Agnostic 3D Detection Framework for Unsupervised Multi-Target Domain Adaptation
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第3期7卷 7904-7911页
作者: Tsai, Darren Berrio, Julie Stephany Shan, Mao Worrall, Stewart Nebot, Eduardo Univ Sydney Australian Ctr Field Robot ACFR Sydney NSW Australia
Sampling discrepancies between different manufacturers and models of lidar sensors result in inconsistent representations of objects. This leads to performance degradation when 3D detectors trained for one lidar are t... 详细信息
来源: 评论
FSNet: A Failure Detection Framework for Semantic segmentation
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第2期7卷 3030-3037页
作者: Rahman, Quazi Marufur Sunderhauf, Niko Corke, Peter Dayoub, Feras Queensland Univ Technol Brisbane Qld 4000 Australia
Semantic segmentation is an important task that helps autonomous vehicles understand their surroundings and navigate safely. However, during deployment, even the most mature segmentation models are vulnerable to vario... 详细信息
来源: 评论