咨询与建议

限定检索结果

文献类型

  • 1 篇 会议

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 机械工程
    • 1 篇 电气工程
    • 1 篇 计算机科学与技术...

主题

  • 1 篇 classification s...
  • 1 篇 document image s...
  • 1 篇 document images
  • 1 篇 uw-iii
  • 1 篇 noise-sensitive ...
  • 1 篇 segmentation-dep...
  • 1 篇 image segmentati...
  • 1 篇 integrated circu...
  • 1 篇 nontext segmenta...
  • 1 篇 text separation
  • 1 篇 variable content
  • 1 篇 document image p...
  • 1 篇 document layout ...
  • 1 篇 digitization pro...
  • 1 篇 optical characte...
  • 1 篇 text processing
  • 1 篇 connected compon...
  • 1 篇 optical characte...
  • 1 篇 training feature...
  • 1 篇 nontext separati...

机构

  • 1 篇 can tho univ col...
  • 1 篇 la rochelle univ...

作者

  • 1 篇 ogier jean-marc
  • 1 篇 cao de tran
  • 1 篇 viet phuong le
  • 1 篇 visani muriel
  • 1 篇 nayef nibal

语言

  • 1 篇 英文
检索条件"主题词=segmentation-dependent zone level"
1 条 记 录,以下是1-10 订阅
排序:
Text and Non-text segmentation based on Connected Component Features
Text and Non-text Segmentation based on Connected Component ...
收藏 引用
13th IAPR International Conference on Document Analysis and Recognition (ICDAR)
作者: Viet Phuong Le Nayef, Nibal Visani, Muriel Ogier, Jean-Marc Cao De Tran La Rochelle Univ Fac Sci & Technol Lab L3I La Rochelle France Can Tho Univ Coll Informat & Commun Technol Can Tho Vietnam
Document image segmentation is crucial to OCR and other digitization processes. In this paper, we present a learning-based approach for text and non-text separation in document images. The training features are extrac... 详细信息
来源: 评论