咨询与建议

限定检索结果

文献类型

  • 3 篇 会议
  • 2 篇 期刊文献

馆藏范围

  • 5 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 5 篇 工学
    • 3 篇 电气工程
    • 3 篇 计算机科学与技术...
    • 1 篇 机械工程
    • 1 篇 仪器科学与技术
    • 1 篇 电子科学与技术(可...
    • 1 篇 信息与通信工程
    • 1 篇 石油与天然气工程
    • 1 篇 软件工程
  • 1 篇 理学
    • 1 篇 化学

主题

  • 5 篇 sensor data visu...
  • 1 篇 nosql database
  • 1 篇 remote monitorin...
  • 1 篇 savitzky-golay s...
  • 1 篇 tiled display
  • 1 篇 gas recognition
  • 1 篇 data storage
  • 1 篇 duty cycle sched...
  • 1 篇 personalization
  • 1 篇 pi4java
  • 1 篇 sensor manipulat...
  • 1 篇 scientific visua...
  • 1 篇 deep neural netw...
  • 1 篇 location-based s...
  • 1 篇 gas sensor array
  • 1 篇 geographic infor...
  • 1 篇 virtual reality
  • 1 篇 sensor data acqu...
  • 1 篇 sensor networks
  • 1 篇 sensor data diss...

机构

  • 1 篇 konkuk univ dept...
  • 1 篇 univ tokyo ctr s...
  • 1 篇 univ n texas col...
  • 1 篇 china univ min &...
  • 1 篇 china univ min &...
  • 1 篇 sapientia hungar...

作者

  • 1 篇 qian chen
  • 1 篇 huang yan
  • 1 篇 kim hyungseok
  • 1 篇 ferencz katalin
  • 1 篇 li xinrong
  • 1 篇 li jiaming
  • 1 篇 lee hanku
  • 1 篇 kim hansoo
  • 1 篇 zhang chengyang
  • 1 篇 wang xi
  • 1 篇 zhao zhikai
  • 1 篇 shiraishi yoh
  • 1 篇 domokos jozsef
  • 1 篇 fu shengli
  • 1 篇 yang jue
  • 1 篇 jiao mingzhi
  • 1 篇 kim sung-ryul
  • 1 篇 acevedo miguel f...

语言

  • 5 篇 英文
检索条件"主题词=sensor data visualization"
5 条 记 录,以下是1-10 订阅
排序:
A user-centric approach for interactive visualization and mapping of geo-sensor data
A user-centric approach for interactive visualization and ma...
收藏 引用
4th International Conference on Networked Sensing Systems
作者: Shiraishi, Yoh Univ Tokyo Ctr Spatial Informat Sci Tokyo Japan
sensor network applications collect and use sensor data from distributed sensor networks and databases. These real-time and time series sensor data are very useful for many location-based systems that manage and brows... 详细信息
来源: 评论
IoT sensor data Acquisition and Storage System Using Raspberry Pi and Apache Cassandra
IoT Sensor Data Acquisition and Storage System Using Raspber...
收藏 引用
IEEE International Conference and Workshop in Obuda on Electrical and Power Engineering (CANDO-EPE)
作者: Ferencz, Katalin Domokos, Jozsef Sapientia Hungarian Univ Transylvania Dept Elect Engn Targu Mures Romania
In this paper, we introduce an alternative solution to the many existing IoT data acquisition and storage systems. We present a self-designed and developed prototype electronic circuit extension for Raspberry Pi devel... 详细信息
来源: 评论
Integration of wireless sensor networks in environmental monitoring cyber infrastructure
收藏 引用
WIRELESS NETWORKS 2010年 第4期16卷 1091-1108页
作者: Yang, Jue Zhang, Chengyang Li, Xinrong Huang, Yan Fu, Shengli Acevedo, Miguel F. Univ N Texas Coll Engn Denton TX 76203 USA
Wireless sensor networks (WSNs) have great potential to revolutionize many science and engineering domains. We present a novel environmental monitoring system with a focus on overall system architecture for seamless i... 详细信息
来源: 评论
VR-based sensor Management System for USN-based Air Quality Monitoring
VR-based Sensor Management System for USN-based Air Quality ...
收藏 引用
4th International Conference on Computer Sciences and Convergence Information Technology
作者: Kim, Hansoo Kim, HyungSeok Lee, Hanku Kim, Sung-Ryul Konkuk Univ Dept Internet & Multimedia Engn Seoul South Korea
We introduce a visualization system of micro-scale air quality monitoring system in the virtual reality environment. The system is targeting to provide everyday air quality by adopting VR-based visualization method. W... 详细信息
来源: 评论
A Novel Gas Recognition Algorithm for Gas sensor Array Combining Savitzky-Golay Smooth and Image Conversion Route
收藏 引用
CHEMOsensorS 2023年 第2期11卷 96页
作者: Wang, Xi Qian, Chen Zhao, Zhikai Li, Jiaming Jiao, Mingzhi China Univ Min & Technol Natl & Local Joint Engn Lab Internet Applicat Tech Xuzhou 221116 Peoples R China China Univ Min & Technol Sch Informat & Control Engn Xuzhou 221116 Peoples R China
In recent years, the application of Deep Neural Networks to gas recognition has been developing. The classification performance of the Deep Neural Network depends on the efficient representation of the input data samp... 详细信息
来源: 评论