While automatic online software anomaly detection is crucial for ensuring the quality of production software, current techniques are mostly inefficient and ineffective. For online software, its inputs are usually prov...
详细信息
ISBN:
(纸本)9781450350761
While automatic online software anomaly detection is crucial for ensuring the quality of production software, current techniques are mostly inefficient and ineffective. For online software, its inputs are usually provided by the users at runtime and the validity of the outputs cannot be automatically verified without a predefined oracle. Furthermore, some online anomalous behavior may be caused by the anomalies in the execution context, rather than by any code defect, which are even more difficult to detect. Existing approaches tackle this problem by identifying certain properties observed from the executions of the software during a training process and using them to monitor online software behavior. However, they may require a large execution overhead for monitoring the properties, which limits the applicability of these approaches for online monitoring. We present a methodology that applies effective algorithms to select a close to optimal set of anomaly-revealing properties, which enables online anomaly detection with minimal execution overhead. Our empirical results show that an average of 76.5% of anomalies were detected by using at most 5.5% of execution overhead.
暂无评论