BackgroundLigand-binding proteins play key roles in many biological processes. Identification of protein-ligand binding residues is important in understanding the biological functions of proteins. Existing computation...
详细信息
BackgroundLigand-binding proteins play key roles in many biological processes. Identification of protein-ligand binding residues is important in understanding the biological functions of proteins. Existing computational methods can be roughly categorized as sequence-based or 3D-structure-basedmethods. All these methods are based on traditional machine learning. In a series of binding residue prediction tasks, 3D-structure-basedmethods are widely superior to sequence-based methods. However, due to the great number of proteins with known amino acid sequences, sequence-based methods have considerable room for improvement with the development of deep learning. Therefore, prediction of protein-ligand binding residues with deep learning requires *** this study, we propose a new sequence-based approach called DeepCSeqSite for ab initio protein-ligand binding residue prediction. DeepCSeqSite includes a standard edition and an enhanced edition. The classifier of DeepCSeqSite is based on a deep convolutional neural network. Several convolutional layers are stacked on top of each other to extract hierarchical features. The size of the effective context scope is expanded as the number of convolutional layers increases. The long-distance dependencies between residues can be captured by the large effective context scope, and stacking several layers enables the maximum length of dependencies to be precisely controlled. The extracted features are ultimately combined through one-by-one convolution kernels and softmax to predict whether the residues are binding residues. The state-of-the-art ligand-binding method COACH and some of its submethods are selected as baselines. The methods are tested on a set of 151 nonredundant proteins and three extended test sets. Experiments show that the improvement of the Matthews correlation coefficient (MCC) is no less than 0.05. In addition, a training data augmentation method that slightly improves the performance is discussed in th
Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are two prevalent non-coding RNAs in current research. They play critical regulatory roles in the life processes of animals and plants. Studies have shown that lnc...
详细信息
Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are two prevalent non-coding RNAs in current research. They play critical regulatory roles in the life processes of animals and plants. Studies have shown that lncRNAs can interact with miRNAs to participate in post-transcriptional regulatory processes, mainly involved in regulating cancer development, metastatic progression, and drug resistance. Additionally, these interactions have significant effects on plant growth, development, and responses to biotic and abiotic stresses. Deciphering the potential relationships between lncRNAs and miRNAs may provide new insights into our understanding of the biological functions of lncRNAs and miRNAs, and the pathogenesis of complex diseases. In contrast, gathering information on lncRNA-miRNA interactions (LMIs) through biological experiments is expensive and time-consuming. With the accumulation of multi-omics data, computational models are extremely attractive in systematically exploring potential LMIs. To the best of our knowledge, this is the first comprehensive review of computational methods for identifying LMIs. Specifically, we first summarized the available public databases for predicting animal and plant LMIs. Second, we comprehensively reviewed the computational methods for predicting LMIs and classified them into two categories, including network-basedmethods and sequence-based methods. Third, we analyzed the standard evaluation methods and metrics used in LMI prediction. Finally, we pointed out some problems in the current study and discuss future research directions. Relevant databases and the latest advances in LMI prediction are summarized in a GitHub repository https://***/sheng-n/lncRNA-miRNA-interaction-methods, and we'll keep it updated.
To exploit the vast amount of sequence information provided by the Genomic revolution, the biological function of these sequences must be identified. As a practical matter, this is often accomplished by functional inf...
详细信息
To exploit the vast amount of sequence information provided by the Genomic revolution, the biological function of these sequences must be identified. As a practical matter, this is often accomplished by functional inference. Purely sequence-based approaches, particularly in the "twilight zone" of low sequence similarity levels, are complicated by many factors. For proteins, structure-based techniques aim to overcome these problems;however, most require high-quality crystal structures and suffer from complex and equivocal relations between protein fold and function. In this study, in extensive benchmarking, we consider a number of aspects of structure-based functional annotation: binding pocket detection, molecular function assignment and ligand-based virtual screening. We demonstrate that protein threading driven by a strong sequence profile component greatly improves the quality of purely structure-based functional annotation in the "twilight zone." By detecting evolutionarily related proteins, it considerably reduces the high false positive rate of function inference derived on the basis of global structure similarity alone. Combined evolution/structure-based function assignment emerges as a powerful technique that can make a significant contribution to comprehensive proteome annotation.
Protein function prediction is critical for understanding the cellular physiological and biochemical processes, and it opens up new possibilities for advancements in fields such as disease research and drug discovery....
详细信息
Protein function prediction is critical for understanding the cellular physiological and biochemical processes, and it opens up new possibilities for advancements in fields such as disease research and drug discovery. During the past decades, with the exponential growth of protein sequence data, many computational methods for predicting protein function have been proposed. Therefore, a systematic review and comparison of these methods are necessary. In this study, we divide these methods into four different categories, including sequence-based methods, 3D structure-basedmethods, PPI network-basedmethods and hybrid information-basedmethods. Furthermore, their advantages and disadvantages are discussed, and then their performance is comprehensively evaluated and compared. Finally, we discuss the challenges and opportunities present in this field.
The determination of membrane protein (MP) structures has always trailed that of soluble proteins due to difficulties in their overexpression, reconstitution into membrane mimetics, and subsequent structure determinat...
详细信息
The determination of membrane protein (MP) structures has always trailed that of soluble proteins due to difficulties in their overexpression, reconstitution into membrane mimetics, and subsequent structure determination. The percentage of MP structures in the protein databank (PDB) has been at a constant 1-2% for the last decade. In contrast, over half of all drugs target MPs, only highlighting how little we understand about drug-specific effects in the human body. To reduce this gap, researchers have attempted to predict structural features of MPs even before the first structure was experimentally elucidated. In this review, we present current computational methods to predict MP structure, starting with secondary structure prediction, prediction of trans-membrane spans, and topology. Even though these methods generate reliable predictions, challenges such as predicting kinks or precise beginnings and ends of secondary structure elements are still waiting to be addressed. We describe recent developments in the prediction of 3D structures of both -helical MPs as well as -barrels using comparative modeling techniques, de novo methods, and molecular dynamics (MD) simulations. The increase of MP structures has (1) facilitated comparative modeling due to availability of more and better templates, and (2) improved the statistics for knowledge-based scoring functions. Moreover, de novo methods have benefited from the use of correlated mutations as restraints. Finally, we outline current advances that will likely shape the field in the forthcoming decade. Proteins 2015;83:1-24. (c) 2014 Wiley Periodicals, Inc.
Accurate identifications of protein-peptide binding residues are essential for protein-peptide interactions and advancing drug discovery. To address this problem, extensive research efforts have been made to design mo...
详细信息
Accurate identifications of protein-peptide binding residues are essential for protein-peptide interactions and advancing drug discovery. To address this problem, extensive research efforts have been made to design more discriminative feature representations. However, extracting these explicit features usually depend on third-party tools, resulting in low computational efficacy and suffering from low predictive performance. In this study, we design an end-to-end deep learning-based method, E2EPep, for protein-peptide binding residue prediction using protein sequence only. E2EPep first employs and fine-tunes two state-of-the-art pre-trained protein language models that can extract two different high-latent feature representations from protein sequences relevant for protein structures and functions. A novel feature fusion module is then designed in E2EPep to fuse and optimize the above two feature representations of binding residues. In addition, we have also design E2EPep+, which integrates E2EPep and PepBCL models, to improve the prediction performance. Experimental results on two independent testing data sets demonstrate that E2EPep and E2EPep + could achieve the average AUC values of 0.846 and 0.842 while achieving an average Matthew's correlation coefficient value that is significantly higher than that of existing most of sequence-based methods and comparable to that of the state-of-the-art structurebased predictors. Detailed data analysis shows that the primary strength of E2EPep lies in the effectiveness of feature representation using cross-attention mechanism to fuse the embeddings generated by two fine-tuned protein language models. The standalone package of E2EPep and E2EPep + can be obtained at https://github. com/ckx259/*** for academic use only.
暂无评论