咨询与建议

限定检索结果

文献类型

  • 167 篇 会议
  • 125 篇 期刊文献
  • 4 篇 学位论文

馆藏范围

  • 296 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 281 篇 工学
    • 207 篇 计算机科学与技术...
    • 115 篇 电气工程
    • 50 篇 软件工程
    • 37 篇 信息与通信工程
    • 19 篇 控制科学与工程
    • 7 篇 机械工程
    • 7 篇 仪器科学与技术
    • 7 篇 石油与天然气工程
    • 6 篇 土木工程
    • 5 篇 水利工程
    • 5 篇 生物医学工程(可授...
    • 4 篇 环境科学与工程(可...
    • 3 篇 动力工程及工程热...
    • 2 篇 电子科学与技术(可...
    • 2 篇 建筑学
  • 63 篇 理学
    • 47 篇 物理学
    • 7 篇 生物学
    • 4 篇 化学
    • 4 篇 地球物理学
    • 3 篇 数学
    • 2 篇 大气科学
  • 56 篇 医学
    • 52 篇 临床医学
    • 2 篇 基础医学(可授医学...
  • 17 篇 管理学
    • 14 篇 管理科学与工程(可...
    • 2 篇 图书情报与档案管...
  • 4 篇 文学
    • 3 篇 外国语言文学
    • 1 篇 中国语言文学
  • 3 篇 农学
    • 3 篇 作物学
  • 1 篇 经济学
    • 1 篇 理论经济学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 296 篇 sequence-to-sequ...
  • 42 篇 deep learning
  • 23 篇 transformer
  • 21 篇 speech recogniti...
  • 17 篇 lstm
  • 16 篇 encoder-decoder
  • 16 篇 end-to-end
  • 14 篇 attention mechan...
  • 14 篇 attention
  • 11 篇 neural networks
  • 11 篇 recurrent neural...
  • 10 篇 task analysis
  • 10 篇 long short-term ...
  • 10 篇 speech synthesis
  • 9 篇 training
  • 8 篇 voice conversion
  • 8 篇 neural network
  • 7 篇 automatic sleep ...
  • 7 篇 self-attention
  • 7 篇 natural language...

机构

  • 5 篇 univ chinese aca...
  • 5 篇 chinese acad sci...
  • 5 篇 univ sci & techn...
  • 4 篇 alibaba grp peop...
  • 4 篇 amazon alexa mac...
  • 3 篇 tech univ cluj n...
  • 3 篇 google mountain ...
  • 3 篇 brno univ techno...
  • 3 篇 google inc mount...
  • 3 篇 karlsruhe inst t...
  • 3 篇 univ chinese aca...
  • 3 篇 johns hopkins un...
  • 2 篇 singapore manage...
  • 2 篇 univ southern qu...
  • 2 篇 tsinghua univ de...
  • 2 篇 indiana univ blo...
  • 2 篇 univ augsburg ch...
  • 2 篇 univ sci & techn...
  • 2 篇 univ alberta edm...
  • 2 篇 natl univ singap...

作者

  • 5 篇 mouchtaris athan...
  • 5 篇 xu bo
  • 5 篇 ling zhen-hua
  • 5 篇 prabhavalkar roh...
  • 4 篇 sainath tara n.
  • 4 篇 de vos maarten
  • 4 篇 chen oliver y.
  • 4 篇 radfar martin
  • 4 篇 watanabe shinji
  • 4 篇 dai li-rong
  • 3 篇 bruguier antoine
  • 3 篇 wang jian
  • 3 篇 hayashi tomoki
  • 3 篇 andres-ferrer je...
  • 3 篇 waibel alex
  • 3 篇 mertins alfred
  • 3 篇 rybach david
  • 3 篇 xu shuang
  • 3 篇 zhou shiyu
  • 3 篇 li haizhou

语言

  • 291 篇 英文
  • 3 篇 其他
  • 1 篇 中文
检索条件"主题词=sequence-to-sequence"
296 条 记 录,以下是181-190 订阅
排序:
Measurement of Music Aesthetics Using Deep Neural Networks and Dissonances
收藏 引用
INFORMATION 2023年 第7期14卷 358页
作者: Paroiu, Razvan Trausan-Matu, Stefan Univ Politehn Bucuresti Comp Sci & Engn Dept 313 Splaiul Independentei Bucharest 060042 Romania Romanian Acad Res Inst Artificial Intelligence Bucharest 050711 Romania Acad Romanian Scientists Str Ilfov 3 Bucharest 050044 Romania
In this paper, a new method that computes the aesthetics of a melody fragment is proposed, starting from dissonances. While music generated with artificial intelligence applications may be produced considerably more q... 详细信息
来源: 评论
Deep Learning Approach for Automatic Romanian Lemmatization  25
Deep Learning Approach for Automatic Romanian Lemmatization
收藏 引用
25th KES International Conference on Knowledge-Based and Intelligent Information & Engineering Systems (KES)
作者: Nutu, Maria Babes Bolyai Univ Fac Math & Comp Sci Dept Comp Sci RO-400084 Cluj Napoca Romania Tech Univ Cluj Napoca Commun Dept RO-400114 Cluj Napoca Romania
This paper proposes a deep learning sequence-to-sequence approach to improve the task of automatic Romanian lemmatization. The study compares 24 systems using different combinations of recurrent, convolutional and att... 详细信息
来源: 评论
Stylized Dialogue Generation
Stylized Dialogue Generation
收藏 引用
IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)
作者: Ke, Shih-Wen Chen, Wei-Liang Natl Cent Univ Dept Informat Management Taoyuan Taiwan
Dialogue systems such as intelligent online customer services, online chatbots or smart kiosks are becoming increasingly popular. Currently dialogue systems lack personality and ability to respond according to context... 详细信息
来源: 评论
RNN-T MODELS FAIL TO GENERALIZE TO OUT-OF-DOMAIN AUDIO: CAUSES AND SOLUTIONS
RNN-T MODELS FAIL TO GENERALIZE TO OUT-OF-DOMAIN AUDIO: CAUS...
收藏 引用
IEEE Spoken Language Technology Workshop (SLT)
作者: Chiu, Chung-Cheng Narayanan, Arun Han, Wei Prabhavalkar, Rohit Zhang, Yu Jaitly, Navdeep Pang, Ruoming Sainath, Tara N. Nguyen, Patrick Cao, Liangliang Wu, Yonghui Google Inc DE Shaw Grp Mountain View CA 94043 USA
In recent years, all-neural end-to-end approaches have obtained state-of-the-art results on several challenging automatic speech recognition (ASR) tasks. However, most existing works focus on building ASR models where... 详细信息
来源: 评论
Reducing Streaming ASR Model Delay with Self Alignment  22
Reducing Streaming ASR Model Delay with Self Alignment
收藏 引用
Interspeech Conference
作者: Kim, Jaeyoung Lu, Han Tripathi, Anshuman Zhang, Qian Sak, Hasim Google Inc Mountain View CA 94043 USA
Reducing prediction delay for streaming end-to-end ASR models with minimal performance regression is a challenging problem. Constrained alignment is a well-known existing approach that penalizes predicted word boundar... 详细信息
来源: 评论
FANS: Fusing ASR and NLU for on-device SLU  22
FANS: Fusing ASR and NLU for on-device SLU
收藏 引用
Interspeech Conference
作者: Radfar, Martin Mouchtaris, Athanasios Kunzmann, Siegfried Rastrow, Ariya Amazon Alexa Machine Learning Seattle WA 98109 USA
Spoken language understanding (SLU) systems translate voice input commands to semantics which are encoded as an intent and pairs of slot tags and values. Most current SLU systems deploy a cascade of two neural models ... 详细信息
来源: 评论
EAT: ENHANCED ASR-TTS FOR SELF-SUPERVISED SPEECH RECOGNITION
EAT: ENHANCED ASR-TTS FOR SELF-SUPERVISED SPEECH RECOGNITION
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Baskar, Murali Karthick Burget, Lukas Watanabe, Shinji Astudillo, Ramon Fernandez Cernocky, Jan Honza Brno Univ Technol Brno Czech Republic Johns Hopkins Univ Baltimore MD USA IBM Res Yorktown Hts NY USA
Self-supervised ASR-TTS models suffer in out-of-domain data conditions. Here we propose an enhanced ASR-TTS (EAT) model that incorporates two main features: 1) The ASR -> TTS direction is equipped with a language m... 详细信息
来源: 评论
SHOW AND SPEAK: DIRECTLY SYNTHESIZE SPOKEN DESCRIPTION OF IMAGES
SHOW AND SPEAK: DIRECTLY SYNTHESIZE SPOKEN DESCRIPTION OF IM...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Wang, Xinsheng Feng, Siyuan Zhu, Jihua Hasegawa-Johnson, Mark Scharenborg, Odette Xi An Jiao Tong Univ Sch Software Engn Xian Peoples R China Delft Univ Technol Multimedia Comp Grp Delft Netherlands Univ Illinois Dept Elect & Comp Engn Urbana IL USA
This paper proposes a new model, referred to as the show and speak (SAS) model that, for the first time, is able to directly synthesize spoken descriptions of images, bypassing the need for any text or phonemes. The b... 详细信息
来源: 评论
Balancing Speed and Accuracy in Neural-Enhanced Phonetic Name Matching
Balancing Speed and Accuracy in Neural-Enhanced Phonetic Nam...
收藏 引用
21st Joint European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD)
作者: Blair, Philip Eliav, Carmel Hasanaj, Fiona Bar, Kfir Basis Technol 1060 Broadway Somerville NJ USA
Automatic co-text free name matching has a variety of important real-world applications, ranging from fiscal compliance to border control. Name matching systems use a variety of engines to compare two names for simila... 详细信息
来源: 评论
Improving Text Summarization Using Feature Extraction Approach Based on Pointer-generator with Coverage  1
收藏 引用
18th Web Information Systems and Applications Conference (WISA)
作者: Chen, Yongchao He, Xin Wang, Guanghui Yu, Junyang Henan Prov Engn Res Ctr Intelligent Data Proc Kaifeng Peoples R China Henan Univ Henan Int Joint Lab Intelligent Network Theory & Kaifeng Peoples R China
The sequence-to-sequence models have been widely used in the abstractive summarization tasks. However, the existing models have inaccuracy issues due to the insufficient understanding of overall semantics, the emergen... 详细信息
来源: 评论