咨询与建议

限定检索结果

文献类型

  • 167 篇 会议
  • 125 篇 期刊文献
  • 4 篇 学位论文

馆藏范围

  • 296 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 281 篇 工学
    • 208 篇 计算机科学与技术...
    • 115 篇 电气工程
    • 50 篇 软件工程
    • 37 篇 信息与通信工程
    • 20 篇 控制科学与工程
    • 7 篇 机械工程
    • 7 篇 仪器科学与技术
    • 7 篇 石油与天然气工程
    • 6 篇 土木工程
    • 5 篇 水利工程
    • 5 篇 生物医学工程(可授...
    • 4 篇 环境科学与工程(可...
    • 3 篇 动力工程及工程热...
    • 2 篇 电子科学与技术(可...
    • 2 篇 建筑学
  • 64 篇 理学
    • 47 篇 物理学
    • 8 篇 生物学
    • 4 篇 化学
    • 4 篇 地球物理学
    • 3 篇 数学
    • 2 篇 大气科学
  • 56 篇 医学
    • 52 篇 临床医学
    • 2 篇 基础医学(可授医学...
  • 17 篇 管理学
    • 14 篇 管理科学与工程(可...
    • 2 篇 图书情报与档案管...
  • 4 篇 文学
    • 3 篇 外国语言文学
    • 1 篇 中国语言文学
  • 2 篇 农学
    • 2 篇 作物学
  • 1 篇 经济学
    • 1 篇 理论经济学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 296 篇 sequence-to-sequ...
  • 42 篇 deep learning
  • 23 篇 transformer
  • 21 篇 speech recogniti...
  • 17 篇 lstm
  • 16 篇 encoder-decoder
  • 16 篇 end-to-end
  • 14 篇 attention mechan...
  • 14 篇 attention
  • 11 篇 neural networks
  • 11 篇 recurrent neural...
  • 10 篇 task analysis
  • 10 篇 long short-term ...
  • 10 篇 speech synthesis
  • 9 篇 training
  • 8 篇 voice conversion
  • 8 篇 neural network
  • 7 篇 automatic sleep ...
  • 7 篇 self-attention
  • 7 篇 natural language...

机构

  • 5 篇 univ chinese aca...
  • 5 篇 chinese acad sci...
  • 5 篇 univ sci & techn...
  • 4 篇 alibaba grp peop...
  • 4 篇 amazon alexa mac...
  • 3 篇 tech univ cluj n...
  • 3 篇 google mountain ...
  • 3 篇 brno univ techno...
  • 3 篇 google inc mount...
  • 3 篇 karlsruhe inst t...
  • 3 篇 univ chinese aca...
  • 3 篇 johns hopkins un...
  • 2 篇 singapore manage...
  • 2 篇 univ southern qu...
  • 2 篇 tsinghua univ de...
  • 2 篇 indiana univ blo...
  • 2 篇 univ augsburg ch...
  • 2 篇 univ sci & techn...
  • 2 篇 univ alberta edm...
  • 2 篇 natl univ singap...

作者

  • 5 篇 mouchtaris athan...
  • 5 篇 xu bo
  • 5 篇 ling zhen-hua
  • 5 篇 prabhavalkar roh...
  • 4 篇 sainath tara n.
  • 4 篇 de vos maarten
  • 4 篇 chen oliver y.
  • 4 篇 radfar martin
  • 4 篇 watanabe shinji
  • 4 篇 dai li-rong
  • 3 篇 bruguier antoine
  • 3 篇 wang jian
  • 3 篇 hayashi tomoki
  • 3 篇 andres-ferrer je...
  • 3 篇 waibel alex
  • 3 篇 mertins alfred
  • 3 篇 rybach david
  • 3 篇 xu shuang
  • 3 篇 zhou shiyu
  • 3 篇 li haizhou

语言

  • 291 篇 英文
  • 3 篇 其他
  • 1 篇 中文
检索条件"主题词=sequence-to-sequence"
296 条 记 录,以下是221-230 订阅
排序:
Comparison between Recurrent Networks and Temporal Convolutional Networks Approaches for Skeleton-Based Action Recognition
收藏 引用
SENSORS 2021年 第6期21卷 2051-2051页
作者: Nan, Mihai Trascau, Mihai Florea, Adina Magda Iacob, Cezar Catalin Univ Politehn Bucuresti Fac Automat Control & Comp RO-060042 Bucharest Romania
Action recognition plays an important role in various applications such as video monitoring, automatic video indexing, crowd analysis, human-machine interaction, smart homes and personal assistive robotics. In this pa... 详细信息
来源: 评论
HNSleepNet: A Novel Hybrid Neural Network for Home Health-Care Automatic Sleep Staging with Raw Single-Channel EEG  18
HNSleepNet: A Novel Hybrid Neural Network for Home Health-Ca...
收藏 引用
18th IEEE International Conference on Industrial Informatics (INDIN)
作者: Chen, Weiwei Yang, Yun Yang, Po Yunnan Univ Sch Software Kunming Yunnan Peoples R China Univ Sheffield Dept Comp London England
Proper scoring of sleep stages may offer more intuitive clinical information for assessing the sleep health and improving the diagnosis of sleep disorders in the smart home healthcare. It usually depends on an accurat... 详细信息
来源: 评论
Copy Mechanism and Tailored Training for Character-Based Data-to-Text Generation
Copy Mechanism and Tailored Training for Character-Based Dat...
收藏 引用
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD)
作者: Roberti, Marco Bonetta, Giovanni Cancelliere, Rossella Gallinari, Patrick Univ Turin Comp Sci Dept Via Pessinetto 12 I-12149 Turin Italy Sorbonne Univ 4 Pl Jussieu F-75005 Paris France Criteo AI Lab 32 Rue Blanche F-75009 Paris France
In the last few years, many different methods have been focusing on using deep recurrent neural networks for natural language generation. The most widely used sequence-to-sequence neural methods are word-based: as suc... 详细信息
来源: 评论
Early Stage LM Integration Using Local and Global Log-Linear Combination  21
Early Stage LM Integration Using Local and Global Log-Linear...
收藏 引用
Interspeech Conference
作者: Michel, Wilfried Schlueter, Ralf Ney, Hermann Rhein Westfal TH Aachen Comp Sci Dept Human Language Technol & Pattern Recognit D-52056 Aachen Germany AppTek GmbH D-52062 Aachen Germany
sequence-to-sequence models with an implicit alignment mechanism (e.g. attention) are closing the performance gap towards traditional hybrid hidden Markov models (HMM) for the task of automatic speech recognition. One... 详细信息
来源: 评论
Asking Questions the Human Way: Scalable Question-Answer Generation from Text Corpus  20
Asking Questions the Human Way: Scalable Question-Answer Gen...
收藏 引用
29th World Wide Web Conference (WWW)
作者: Liu, Bang Wei, Haojie Niu, Di Chen, Haolan He, Yancheng Univ Alberta Edmonton AB Canada Tencent Platform & Content Grp Shenzhen Peoples R China
The ability to ask questions is important in both human and machine intelligence. Learning to ask questions helps knowledge acquisition, improves question-answering and machine reading comprehension tasks, and helps a... 详细信息
来源: 评论
TRANSFORMER TRANSDUCER: A STREAMABLE SPEECH RECOGNITION MODEL WITH TRANSFORMER ENCODERS AND RNN-T LOSS
TRANSFORMER TRANSDUCER: A STREAMABLE SPEECH RECOGNITION MODE...
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Mang, Qian Lu, Han Sak, Hasim Nipathi, Anshuman McDermott, Erik Koo, Stephen Kumar, Shankar Google Inc Mountain View CA 94043 USA
In this paper we present an end-to-end speech recognition model with Transformer encoders that can be used in a streaming speech recognition system. Transformer computation blocks based on self-attention are used to e... 详细信息
来源: 评论
RECOApy: Data recording, pre-processing and phonetic transcription for end-to-end speech-based applications  21
RECOApy: Data recording, pre-processing and phonetic transcr...
收藏 引用
Interspeech Conference
作者: Stan, Adriana Tech Univ Cluj Napoca Commun Dept Cluj Napoca Romania
Deep learning enables the development of efficient end-to-end speech processing applications while bypassing the need for expert linguistic and signal processing features. Yet, recent studies show that good quality sp... 详细信息
来源: 评论
Deep Learning Approach for Automatic Romanian Lemmatization
收藏 引用
Procedia Computer Science 2021年 192卷 49-58页
作者: Maria Nuţu Department of Computer Science Faculty of Mathematics and Computer Science Babeş-Bolyai University Cluj-Napoca RO-400084 Communications Department Technical University of Cluj-Napoca RO-400114
This paper proposes a deep learning sequence-to-sequence approach to improve the task of automatic Romanian lemmatization. The study compares 24 systems using different combinations of recurrent, convolutional and att... 详细信息
来源: 评论
Forecasting Building Electricity Power Consumption Using Deep Learning Approach
Forecasting Building Electricity Power Consumption Using Dee...
收藏 引用
IEEE International Conference on Big Data and Smart Computing (BigComp)
作者: Lee, Young-Jun Choi, Ho-Jin Korea Adv Inst Sci & Technol Sch Comp Daejeon South Korea
As electricity power usage increases in buildings, it is important to use and supply electricity power efficiently. Recently, there are studies to forecast the energy consumption by using the deep learning method, whi... 详细信息
来源: 评论
Semi-Supervised Learning with Data Augmentation for End-to-End ASR  21
Semi-Supervised Learning with Data Augmentation for End-to-E...
收藏 引用
Interspeech Conference
作者: Weninger, Felix Mana, Franco Gemello, Roberto Andres-Ferrer, Jesus Zhan, Puming Nuance Commun Inc Burlington MA 01803 USA Nuance Commun Turin Italy Nuance Commun Valencia Spain
In this paper, we apply Semi-Supervised Learning (SSL) along with Data Augmentation (DA) for improving the accuracy of End-to-End ASR. We focus on the consistency regularization principle, which has been successfully ... 详细信息
来源: 评论