咨询与建议

限定检索结果

文献类型

  • 167 篇 会议
  • 125 篇 期刊文献
  • 4 篇 学位论文

馆藏范围

  • 296 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 281 篇 工学
    • 207 篇 计算机科学与技术...
    • 115 篇 电气工程
    • 50 篇 软件工程
    • 37 篇 信息与通信工程
    • 19 篇 控制科学与工程
    • 7 篇 机械工程
    • 7 篇 仪器科学与技术
    • 7 篇 石油与天然气工程
    • 6 篇 土木工程
    • 5 篇 水利工程
    • 5 篇 生物医学工程(可授...
    • 4 篇 环境科学与工程(可...
    • 3 篇 动力工程及工程热...
    • 2 篇 电子科学与技术(可...
    • 2 篇 建筑学
  • 63 篇 理学
    • 47 篇 物理学
    • 7 篇 生物学
    • 4 篇 化学
    • 4 篇 地球物理学
    • 3 篇 数学
    • 2 篇 大气科学
  • 56 篇 医学
    • 52 篇 临床医学
    • 2 篇 基础医学(可授医学...
  • 17 篇 管理学
    • 14 篇 管理科学与工程(可...
    • 2 篇 图书情报与档案管...
  • 4 篇 文学
    • 3 篇 外国语言文学
    • 1 篇 中国语言文学
  • 3 篇 农学
    • 3 篇 作物学
  • 1 篇 经济学
    • 1 篇 理论经济学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 296 篇 sequence-to-sequ...
  • 42 篇 deep learning
  • 23 篇 transformer
  • 21 篇 speech recogniti...
  • 17 篇 lstm
  • 16 篇 encoder-decoder
  • 16 篇 end-to-end
  • 14 篇 attention mechan...
  • 14 篇 attention
  • 11 篇 neural networks
  • 11 篇 recurrent neural...
  • 10 篇 task analysis
  • 10 篇 long short-term ...
  • 10 篇 speech synthesis
  • 9 篇 training
  • 8 篇 voice conversion
  • 8 篇 neural network
  • 7 篇 automatic sleep ...
  • 7 篇 self-attention
  • 7 篇 natural language...

机构

  • 5 篇 univ chinese aca...
  • 5 篇 chinese acad sci...
  • 5 篇 univ sci & techn...
  • 4 篇 alibaba grp peop...
  • 4 篇 amazon alexa mac...
  • 3 篇 tech univ cluj n...
  • 3 篇 google mountain ...
  • 3 篇 brno univ techno...
  • 3 篇 google inc mount...
  • 3 篇 karlsruhe inst t...
  • 3 篇 univ chinese aca...
  • 3 篇 johns hopkins un...
  • 2 篇 singapore manage...
  • 2 篇 univ southern qu...
  • 2 篇 tsinghua univ de...
  • 2 篇 indiana univ blo...
  • 2 篇 univ augsburg ch...
  • 2 篇 univ sci & techn...
  • 2 篇 univ alberta edm...
  • 2 篇 natl univ singap...

作者

  • 5 篇 mouchtaris athan...
  • 5 篇 xu bo
  • 5 篇 ling zhen-hua
  • 5 篇 prabhavalkar roh...
  • 4 篇 sainath tara n.
  • 4 篇 de vos maarten
  • 4 篇 chen oliver y.
  • 4 篇 radfar martin
  • 4 篇 watanabe shinji
  • 4 篇 dai li-rong
  • 3 篇 bruguier antoine
  • 3 篇 wang jian
  • 3 篇 hayashi tomoki
  • 3 篇 andres-ferrer je...
  • 3 篇 waibel alex
  • 3 篇 mertins alfred
  • 3 篇 rybach david
  • 3 篇 xu shuang
  • 3 篇 zhou shiyu
  • 3 篇 li haizhou

语言

  • 291 篇 英文
  • 3 篇 其他
  • 1 篇 中文
检索条件"主题词=sequence-to-sequence"
296 条 记 录,以下是271-280 订阅
排序:
A Neural Conversational Model Using MMI-WMD Decoder Based on the Seq2Seq with Attention Mechanism  31
A Neural Conversational Model Using MMI-WMD Decoder Based on...
收藏 引用
31st Chinese Control And Decision Conference (CCDC)
作者: Wang, Tianzhi Cai, Meng Li, Jianxun Shanghaijiaotong Univ Dept Automat Shanghai 200240 Peoples R China Luoyang Inst Electroopt Equipment AVIC Dept Automat Luoyang 471009 Peoples R China
sequence-to-sequence neural conversational model generates responses tend to be safe and commonplace(e.g.. I don't know. I'm not sure, I'm sorry), meanwhile the more diversity-promoting and conform respons... 详细信息
来源: 评论
Advanced Customer Activity Prediction based on Deep Hierarchic Encoder-Decoders  22
Advanced Customer Activity Prediction based on Deep Hierarch...
收藏 引用
22nd International Conference on Control Systems and Computer Science (CSCS)
作者: Damian, Andrei Ionut Tapus, Nicolae Piciu, Laurentiu Turlea, Sergiu Lummetry AI Bucharest Romania Univ Politehn Bucuresti Bucharest Romania
Product recommender systems and customer profiling techniques have always been a priority in online retail. Recent machine learning research advances and also wide availability of massive parallel numerical computing ... 详细信息
来源: 评论
MODALITY ATTENTION FOR END-TO-END AUDIO-VISUAL SPEECH RECOGNITION  44
MODALITY ATTENTION FOR END-TO-END AUDIO-VISUAL SPEECH RECOGN...
收藏 引用
44th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Zhou, Pan Yang, Wenwen Chen, Wei Wang, Yanfeng Jia, Jia Tsinghua Univ Dept Comp Sci & Technol Beijing Peoples R China Sogou Inc Voice Interact Technol Ctr Beijing Peoples R China
Audio-visual speech recognition ( AVSR) system is thought to be one of the most promising solutions for robust speech recognition, especially in noisy environment. In this paper, we propose a novel multimodal attentio... 详细信息
来源: 评论
Automatic Acrostic Couplet Generation with Three-Stage Neural Network Pipelines  16th
Automatic Acrostic Couplet Generation with Three-Stage Neura...
收藏 引用
16th Pacific Rim International Conference on Artificial Intelligence (PRICAI)
作者: Fan, Haoshen Wang, Jie Zhuang, Bojin Wang, Shaojun Xiao, Jing Univ Sci & Technol China Hefei Peoples R China Ping An Technol Shenzhen Co Ltd Shenzhen Peoples R China
As one of the quintessence of Chinese traditional culture, couplet compromises two syntactically symmetric clauses equal in length, namely, an antecedent and subsequent clause. Moreover, corresponding characters and p... 详细信息
来源: 评论
Attention-based Surgical Phase Boundaries Detection in Laparoscopic Videos  6
Attention-based Surgical Phase Boundaries Detection in Lapar...
收藏 引用
6th Annual Conference on Computational Science and Computational Intelligence (CSCI)
作者: Namazi, Babak Sankaranarayanan, Ganesh Devarajan, Venkat Univ Texas Arlington Dept Elect Engn Arlington TX 76019 USA Baylor Univ Med Ctr Dept Surg Dallas TX 75246 USA
A new deep learning-based method is proposed for identifying the boundaries of all surgical phases in a laparoscopic video. The model is designed based on the sequence-to-sequence architecture with an attention mechan... 详细信息
来源: 评论
Deep Learning for Automatic Diacritics Restoration in Romanian  15
Deep Learning for Automatic Diacritics Restoration in Romani...
收藏 引用
IEEE 15th International Conference on Intelligent Computer Communication and Processing (ICCP)
作者: Nutu, Maria Lorincz, Beata Stan, Adriana Tech Univ Cluj Napoca Commun Dept Cluj Napoca Romania Babes Bolyai Univ Dept Comp Sci Cluj Napoca Romania
In this paper we address the issue of automatic diacritics restoration (ADR) for Romanian using deep learning strategies. We compare 6 separate architectures with various mixtures of recurrent and convolutional layers... 详细信息
来源: 评论
A Novel Chinese Sign Language Recognition Method Based on Keyframe-Centered Clips
收藏 引用
IEEE SIGNAL PROCESSING LETTERS 2018年 第3期25卷 442-446页
作者: Huang, Shiliang Mao, Chensi Tao, Jinxu Ye, Zhongfu Univ Sci & Technol China Dept Elect Engn & Informat Sci Hefei 230027 Anhui Peoples R China Natl Engn Lab Speech & Language Informat Proc Hefei 230027 Anhui Peoples R China
Isolated sign language recognition (SLR) is a long-standing research problem. The existing methods consider inclusively ambiguous data to represent a sign and ignore the fact that only scarce key information can repre... 详细信息
来源: 评论
Attention for Implicit Discourse Relation Recognition  11
Attention for Implicit Discourse Relation Recognition
收藏 引用
11th International Conference on Language Resources and Evaluation (LREC)
作者: Cianflone, Andre Kosseim, Leila Concordia Univ Dept Engn & Comp Sci Montreal PQ Canada
Implicit discourse relation recognition remains a challenging task as state-of-the-art approaches reach F1 scores ranging from 9.95% to 37.67% on the 2016 CoNLL shared task. In our work, we explore the use of a neural... 详细信息
来源: 评论
Mongolian Grapheme to Phoneme Conversion by Using Hybrid Approach  7th
Mongolian Grapheme to Phoneme Conversion by Using Hybrid App...
收藏 引用
7th CCF International Conference on Natural Language Processing and Chinese Computing, NLPCC
作者: Liu, Zhinan Bao, Feilong Gao, Guanglai Suburi Inner Mongolia Univ Coll Comp Sci Hohhot 010021 Peoples R China Inner Mongolia Publ Secur Dept Hohhot 010021 Peoples R China
Grapheme to phoneme (G2P) conversion is the assignment of converting word to its pronunciation. It has important applications in text-to-speech (TTS), speech recognition and sounds-like queries in textual databases. I... 详细信息
来源: 评论
Towards Temporal Modelling of Categorical Speech Emotion Recognition  19
Towards Temporal Modelling of Categorical Speech Emotion Rec...
收藏 引用
19th Annual Conference of the International-Speech-Communication-Association (INTERSPEECH 2018)
作者: Han, Wenjing Ruan, Huabin Chen, Xiaomin Wang, Zhixiang Li, Haifeng Schuller, Bjoern Samsung Res Inst China Beijing SRC B Beijing Peoples R China Tsinghua Univ Prot Res Technol Ctr Beijing Peoples R China Harbin Inst Technol Sch Comp Sci & Technol Harbin Heilongjiang Peoples R China Imperial Coll London GLAM London England Univ Augsburg ZD B Chair Embedded Intelligence Hlth Care & Well Augsburg Germany
To model the categorical speech emotion recognition task in a temporal manner, the first challenge arising is how to transfer the categorical label for each utterance into a label sequence. To settle this, we make a h... 详细信息
来源: 评论