咨询与建议

限定检索结果

文献类型

  • 76 篇 会议
  • 62 篇 期刊文献
  • 1 篇 学位论文

馆藏范围

  • 139 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 135 篇 工学
    • 94 篇 计算机科学与技术...
    • 51 篇 电气工程
    • 22 篇 信息与通信工程
    • 18 篇 软件工程
    • 14 篇 控制科学与工程
    • 9 篇 交通运输工程
    • 6 篇 石油与天然气工程
    • 5 篇 测绘科学与技术
    • 4 篇 动力工程及工程热...
    • 4 篇 土木工程
    • 2 篇 机械工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 船舶与海洋工程
    • 2 篇 生物医学工程(可授...
    • 2 篇 安全科学与工程
    • 1 篇 光学工程
  • 28 篇 理学
    • 19 篇 物理学
    • 3 篇 地球物理学
    • 2 篇 数学
    • 2 篇 化学
    • 1 篇 地理学
    • 1 篇 大气科学
    • 1 篇 海洋科学
  • 23 篇 医学
    • 19 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 9 篇 管理学
    • 9 篇 管理科学与工程(可...
    • 2 篇 图书情报与档案管...
  • 2 篇 文学
    • 2 篇 外国语言文学
  • 1 篇 经济学
    • 1 篇 理论经济学
  • 1 篇 教育学
    • 1 篇 教育学

主题

  • 139 篇 sequence-to-sequ...
  • 18 篇 deep learning
  • 17 篇 attention mechan...
  • 12 篇 speech synthesis
  • 10 篇 natural language...
  • 8 篇 speech recogniti...
  • 7 篇 transformer
  • 7 篇 attention
  • 6 篇 training
  • 5 篇 transformers
  • 5 篇 decoding
  • 5 篇 feature extracti...
  • 4 篇 semantic segment...
  • 4 篇 transfer learnin...
  • 4 篇 machine learning
  • 4 篇 text-to-speech s...
  • 4 篇 neural machine t...
  • 3 篇 machine translat...
  • 3 篇 automated progra...
  • 3 篇 lstm

机构

  • 3 篇 google mountain ...
  • 3 篇 google llc mount...
  • 2 篇 google res mount...
  • 2 篇 soongsil univ de...
  • 2 篇 nara inst sci & ...
  • 2 篇 soongsil univ sc...
  • 2 篇 nagoya univ info...
  • 2 篇 natl inst inform...
  • 2 篇 univ trento dept...
  • 2 篇 cent china norma...
  • 2 篇 south china univ...
  • 2 篇 fdn bruno kessle...
  • 1 篇 columbia univers...
  • 1 篇 indian inst trop...
  • 1 篇 fdn bruno kessle...
  • 1 篇 city univ hong k...
  • 1 篇 chung ang univ g...
  • 1 篇 jd intelligent c...
  • 1 篇 shandong enginee...
  • 1 篇 ping an technol ...

作者

  • 4 篇 jia ye
  • 4 篇 weiss ron j.
  • 4 篇 bovolo francesca
  • 4 篇 ghosh raktim
  • 4 篇 biadsy fadi
  • 3 篇 moreno pedro j.
  • 3 篇 wu yonghui
  • 2 篇 yamagishi junich...
  • 2 篇 johnson melvin
  • 2 篇 chen youzheng
  • 2 篇 tan xiaoyu
  • 2 篇 ramabhadran bhuv...
  • 2 篇 nakamura satoshi
  • 2 篇 jiang liyang
  • 2 篇 li min
  • 2 篇 lee soowon
  • 2 篇 okamoto takuma
  • 2 篇 kawahara tatsuya
  • 2 篇 wu chung-hsien
  • 2 篇 doshi rohan

语言

  • 138 篇 英文
  • 1 篇 德文
  • 1 篇 法文
检索条件"主题词=sequence-to-sequence Model"
139 条 记 录,以下是61-70 订阅
排序:
Physically Consistent Soft-Sensor Development Using sequence-to-sequence Neural Networks
收藏 引用
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 2020年 第4期16卷 2829-2838页
作者: Chou, Cheng-Hung Wu, Haibin Kang, Jia-Lin Wong, David Shan-Hill Yao, Yuan Chuang, Yao-Chen Jang, Shi-Shang Ou, John Di-Yi Natl Tsing Hua Univ Dept Chem Engn Hsinchu 30013 Taiwan Natl Taiwan Univ Grad Inst Commun Engn Taipei 10617 Taiwan Natl Yunlin Univ Sci & Technol Dept Chem & Mat Engn Touliu 64002 Yunlin Taiwan Natl Tsing Hua Univ Ctr Energy & Environm Res Hsinchu 30013 Taiwan
Soft sensors attempt to predict the key quality variables that are infrequently available using the sensor and manipulated variables that are readily available. Since only limited amount of labeled data are available,... 详细信息
来源: 评论
Document Summarization model Based on General Context in RNN
收藏 引用
JOURNAL OF INFORMATION PROCESSING SYSTEMS 2019年 第6期15卷 1378-1391页
作者: Kim, Heechan Lee, Soowon Soongsil Univ Dept Software Convergence Seoul South Korea Soongsil Univ Sch Software Seoul South Korea
In recent years, automatic document summarization has been widely studied in the field of natural language processing thanks to the remarkable developments made using deep learning models. To decode a word, existing m... 详细信息
来源: 评论
Synthesizing waveform sequence-to-sequence to augment training data for sequence-to-sequence speech recognition
收藏 引用
ACOUSTICAL SCIENCE AND TECHNOLOGY 2021年 第6期42卷 333-343页
作者: Ueno, Sei Mimura, Masato Sakai, Shinsuke Kawahara, Tatsuya Kyoto Univ Grad Sch Informat Sakyo Ku Kyoto 6068501 Japan
sequence-to-sequence (seq2seq) automatic speech recognition (ASR) recently achieves state-of-the-art performance with fast decoding and a simple architecture. On the other hand, it requires a large amount of training ... 详细信息
来源: 评论
Machine learning based state-of-charge prediction of electrochemical green hydrogen production:Zink-Zwischenschritt-Elektrolyseur(ZZE)
收藏 引用
Energy and AI 2024年 第2期16卷 269-276页
作者: Daniel Vila Elisabeth Hornberger Christina Toigo STOFF2 GmbH–Gebäude H/Flughafen Tegel 1 13405 BerlinGermany University of Applied Sciences Upper Austria Stelzhamerstraße 23A-4600 WelsAustria Centre for Economic Research on Inclusivity and Sustainability at the University of Galway University RoadGalwayIreland
The intermittency of renewable energy is a key limiting factor for the successful decarbonization of both energy producing and consuming sectors. Green hydrogen has the potential to act as the central energy vector co... 详细信息
来源: 评论
A sequence-to-sequence Deep Learning Architecture Based on Bidirectional GRU for Type Recognition and Time Location of Combined Power Quality Disturbance
收藏 引用
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 2019年 第8期15卷 4481-4493页
作者: Deng, Yaping Wang, Lu Jia, Hao Tong, Xiangqian Li, Feng Xian Univ Technol Dept Elect Engn Xian 710048 Shaanxi Peoples R China Ningxia Elect Power Res Inst Yinchuan 750011 Peoples R China
In this paper, a sequence-to-sequence deep learning architecture based on the bidirectional gated recurrent unit (Bi-GRU) for type recognition and time location of combined power quality disturbance is proposed. Espec... 详细信息
来源: 评论
Leveraging Causal Inference for Explainable Automatic Program Repair
Leveraging Causal Inference for Explainable Automatic Progra...
收藏 引用
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) / IEEE World Congress on Computational Intelligence (IEEE WCCI) / International Joint Conference on Neural Networks (IJCNN) / IEEE Congress on Evolutionary Computation (IEEE CEC)
作者: Wang, Jianzong Si, Shijing Zhu, Zhitao Qu, Xiaoyang Hong, Zhenhou Xiao, Jing Ping An Technol Shenzhen Co Ltd Shenzhen Peoples R China
Deep learning models have made significant progress in automatic program repair. However, the black-box nature of these methods has restricted their practical applications. To address this challenge, this paper presen... 详细信息
来源: 评论
sequence-TO-sequence LABANOTATION GENERATION BASED ON MOTION CAPTURE DATA
SEQUENCE-TO-SEQUENCE LABANOTATION GENERATION BASED ON MOTION...
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Li, Min Miao, Zhenjiang Ma, Cong Beijing Jiaotong Univ Beijing Peoples R China
Labanotation is an important notation system for recording dances. Automatically generating Labanotation scores from motion capture data has attracted more interest in recent years. Current methods usually focus on in... 详细信息
来源: 评论
Attention Forcing for Speech Synthesis  21
Attention Forcing for Speech Synthesis
收藏 引用
Interspeech Conference
作者: Dou, Qingyun Efiong, Joshua Gales, Mark J. F. Univ Cambridge Cambridge England
Auto-regressive sequence-to-sequence models with attention mechanisms have achieved state-of-the-art performance in various tasks including speech synthesis. Training these models can be difficult. The standard approa... 详细信息
来源: 评论
A Conformer-basedWaveform-domain Neural Acoustic Echo Canceller Optimized for ASR Accuracy  23
A Conformer-basedWaveform-domain Neural Acoustic Echo Cancel...
收藏 引用
Interspeech Conference
作者: Panchapagesan, Sankaran Narayanan, Arun Shabestary, Turaj Zakizadeh Shao, Shuai Howard, Nathan Park, Alex Walker, James Gruenstein, Alexander Google LLC Mountain View CA 94043 USA
Acoustic Echo Cancellation (AEC) is essential for accurate recognition of queries spoken to a smart speaker that is playing out audio. Previous work has shown that a neural AEC model operating on log-mel spectral feat... 详细信息
来源: 评论
DATA AUGMENTATION FOR ASR USING TTS VIA A DISCRETE REPRESENTATION
DATA AUGMENTATION FOR ASR USING TTS VIA A DISCRETE REPRESENT...
收藏 引用
IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)
作者: Ueno, Sei Mimura, Masato Sakai, Shinsuke Kawahara, Tatsuya Kyoto Univ Grad Sch Informat Sakyo Ku Kyoto Japan
While end-to-end automatic speech recognition (ASR) has achieved high performance, it requires a huge amount of paired speech and transcription data for training Recently, data augmentation methods have actively been ... 详细信息
来源: 评论