咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程
    • 1 篇 信息与通信工程
    • 1 篇 计算机科学与技术...

主题

  • 1 篇 short-term load ...
  • 1 篇 lightgbm classif...
  • 1 篇 load modeling
  • 1 篇 sequence-to-sequ...
  • 1 篇 predictive model...
  • 1 篇 feature extracti...
  • 1 篇 clustering algor...
  • 1 篇 convolutional ne...
  • 1 篇 load forecasting
  • 1 篇 feature engineer...
  • 1 篇 forecasting
  • 1 篇 k-means clusteri...
  • 1 篇 convolutional ne...

机构

  • 1 篇 keimyung univ de...
  • 1 篇 kyungpook natl u...

作者

  • 1 篇 acquah moses amo...
  • 1 篇 kim sung-yul
  • 1 篇 jin yuwei
  • 1 篇 son yeong-geon
  • 1 篇 oh byeong-chan

语言

  • 1 篇 英文
检索条件"主题词=sequence-to-sequence forecast"
1 条 记 录,以下是1-10 订阅
排序:
Spatiotemporal sequence-to-sequence Clustering for Electric Load forecasting
收藏 引用
IEEE ACCESS 2023年 11卷 5850-5863页
作者: Acquah, Moses Amoasi Jin, Yuwei Oh, Byeong-Chan Son, Yeong-Geon Kim, Sung-Yul Keimyung Univ Dept Elect Energy Engn Daegu 42601 South Korea Kyungpook Natl Univ Dept Elect & Elect Engn Daegu 41566 South Korea
Massive electrical load exhibits many patterns making it difficult for forecast algorithms to generalise well. Most learning algorithms produce a better forecast for dominant patterns in the case of weekday consumptio... 详细信息
来源: 评论