咨询与建议

限定检索结果

文献类型

  • 39 篇 期刊文献
  • 38 篇 会议

馆藏范围

  • 77 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 73 篇 工学
    • 49 篇 计算机科学与技术...
    • 39 篇 电气工程
    • 9 篇 信息与通信工程
    • 5 篇 控制科学与工程
    • 5 篇 软件工程
    • 3 篇 电子科学与技术(可...
    • 2 篇 动力工程及工程热...
    • 2 篇 石油与天然气工程
    • 1 篇 仪器科学与技术
    • 1 篇 土木工程
    • 1 篇 水利工程
    • 1 篇 测绘科学与技术
    • 1 篇 化学工程与技术
    • 1 篇 交通运输工程
    • 1 篇 环境科学与工程(可...
  • 14 篇 理学
    • 12 篇 物理学
    • 1 篇 地球物理学
    • 1 篇 生物学
  • 10 篇 医学
    • 8 篇 临床医学
    • 2 篇 基础医学(可授医学...
  • 5 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 2 篇 图书情报与档案管...
  • 1 篇 文学
    • 1 篇 外国语言文学

主题

  • 77 篇 sequence-to-sequ...
  • 13 篇 deep learning
  • 7 篇 natural language...
  • 7 篇 recurrent neural...
  • 6 篇 voice conversion
  • 6 篇 recurrent neural...
  • 6 篇 attention mechan...
  • 5 篇 transformer
  • 5 篇 attention
  • 4 篇 lstm
  • 4 篇 decoding
  • 4 篇 data models
  • 4 篇 training
  • 3 篇 machine translat...
  • 3 篇 scene text recog...
  • 3 篇 task analysis
  • 3 篇 pretraining
  • 3 篇 long short-term ...
  • 3 篇 acoustics
  • 3 篇 end-to-end learn...

机构

  • 4 篇 natl chiao tung ...
  • 2 篇 ntt corp ntt com...
  • 2 篇 microsoft res as...
  • 2 篇 nagoya univ nago...
  • 2 篇 kyoto univ grad ...
  • 2 篇 natl inst adv in...
  • 2 篇 nanyang technol ...
  • 1 篇 natl res univ hi...
  • 1 篇 waseda univ dept...
  • 1 篇 hefei univ techn...
  • 1 篇 wuhan univ hubei...
  • 1 篇 acad sinica inst...
  • 1 篇 univ washington ...
  • 1 篇 megvii face inc ...
  • 1 篇 peking univ peop...
  • 1 篇 beijing inst tec...
  • 1 篇 chinese acad sci...
  • 1 篇 univ montreal mi...
  • 1 篇 natl tech univ a...
  • 1 篇 beijing normal u...

作者

  • 4 篇 chien jen-tzung
  • 4 篇 kameoka hirokazu
  • 3 篇 huang wen-chin
  • 3 篇 toda tomoki
  • 3 篇 tanaka kou
  • 3 篇 kaneko takuhiro
  • 2 篇 chang wei-hsiang
  • 2 篇 yoshii kazuyoshi
  • 2 篇 wang hai
  • 2 篇 goto masataka
  • 2 篇 nishikimi ryo
  • 2 篇 hojo nobukatsu
  • 2 篇 nakamura eita
  • 1 篇 zhang xuejie
  • 1 篇 kim yurim
  • 1 篇 doostmohammadi e...
  • 1 篇 wang yi-chia
  • 1 篇 asfour tamim
  • 1 篇 ehsan doostmoham...
  • 1 篇 cheng zifeng

语言

  • 76 篇 英文
  • 1 篇 中文
检索条件"主题词=sequence-to-sequence learning"
77 条 记 录,以下是61-70 订阅
排序:
learning a bidirectional mapping between human whole-body motion and natural language using deep recurrent neural networks
收藏 引用
ROBOTICS AND AUTONOMOUS SYSTEMS 2018年 109卷 13-26页
作者: Plappert, Matthias Mandery, Christian Asfour, Tamim Karlsruhe Inst Technol High Performance Humanoid Technol H2T Adenauerring 2Bldg 50-20 D-76131 Karlsruhe Germany
Linking human whole-body motion and natural language is of great interest for the generation of semantic representations of observed human behaviors as well as for the generation of robot behaviors based on natural la... 详细信息
来源: 评论
Question Generation With Doubly Adversarial Nets
收藏 引用
IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING 2018年 第11期26卷 2230-2239页
作者: Bao, Junwei Gong, Yeyun Duan, Nan Zhou, Ming Zhao, Tiejun Harbin Inst Technol Sch Comp Sci & Technol Harbin 150001 Heilongjiang Peoples R China Microsoft Res Asia Nat Language Comp Grp Beijing 100080 Peoples R China Microsoft Res Asia Beijing 100080 Peoples R China
We study the problem of question generation on a specific domain, where there are no labeled data. To address this problem, we propose a novel neural question generation approach called DoubAN, or doubly adversarial n... 详细信息
来源: 评论
A Deep Neural Network Model for Joint Entity and Relation Extraction
收藏 引用
IEEE ACCESS 2019年 7卷 179143-179150页
作者: Pang, Yihe Liu, Jie Liu, Lizhen Yu, Zhengtao Zhang, Kai Capital Normal Univ Dept Informat Engn Beijing 100048 Peoples R China Capital Normal Univ Res Ctr Language Intelligence Beijing 100048 Peoples R China Beijing Adv Innovat Ctr Imaging Theory & Technol Beijing 100048 Peoples R China Kunming Univ Sci & Technol Dept Informat Engn & Automat Kunming 650504 Yunnan Peoples R China
Joint extraction of entities and their relations from the text is an essential issue in automatic knowledge graph construction, which is also known as the joint extraction of relational triplets. The relational triple... 详细信息
来源: 评论
Retrospective Encoders for Video Summarization  15th
Retrospective Encoders for Video Summarization
收藏 引用
15th European Conference on Computer Vision (ECCV)
作者: Zhang, Ke Grauman, Kristen Sha, Fei Univ Southern Calif Dept Comp Sci Los Angeles CA 90089 USA Facebook AI Res 300 W Sixth St Austin TX 78701 USA Netflix 5808 Sunset Blvd Los Angeles CA 90028 USA
Supervised learning techniques have shown substantial progress on video summarization. State-of-the-art approaches mostly regard the predicted summary and the human summary as two sequences (sets), and minimize discri... 详细信息
来源: 评论
RECALL NEURAL NETWORK FOR SOURCE SEPARATION
RECALL NEURAL NETWORK FOR SOURCE SEPARATION
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Chien, Jen-Tzung Tsou, Kai-Wei Natl Chiao Tung Univ Dept Elect & Comp Engn Hsinchu Taiwan
This paper presents a novel memory-augmented neural network for single-channel source separation. We propose a recall neural network (RCNN) where a couple of external memories are realized for sequence-to-sequence lea... 详细信息
来源: 评论
EFFICIENTLY TRAINABLE TEXT-TO-SPEECH SYSTEM BASED ON DEEP CONVOLUTIONAL NETWORKS WITH GUIDED ATTENTION
EFFICIENTLY TRAINABLE TEXT-TO-SPEECH SYSTEM BASED ON DEEP CO...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Tachibana, Hideyuki Uenoyama, Katsuya Aihara, Shunsuke PKSHA Technol Inc Bunkyo Ku Tokyo Japan
This paper describes a novel text-to-speech (TTS) technique based on deep convolutional neural networks (CNN), without use of any recurrent units. Recurrent neural networks (RNN) have become a standard technique to mo... 详细信息
来源: 评论
Lemmatization for Ancient Languages: Rules or Neural Networks?  7th
Lemmatization for Ancient Languages: Rules or Neural Network...
收藏 引用
7th International Conference on Artificial Intelligence and Natural Language (AINL)
作者: Dereza, Oksana Natl Res Univ Higher Sch Econ Moscow Russia Lomonosov Moscow State Univ Moscow Russia
Lemmatisation, which is one of the most important stages of text preprocessing, consists in grouping the inflected forms of a word together so they can be analysed as a single item. This task is often considered solve... 详细信息
来源: 评论
RHYTHM-FLEXIBLE VOICE CONVERSION WITHOUT PARALLEL DATA USING CYCLE-GAN OVER PHONEME POSTERIORGRAM sequenceS
RHYTHM-FLEXIBLE VOICE CONVERSION WITHOUT PARALLEL DATA USING...
收藏 引用
IEEE Workshop on Spoken Language Technology (SLT)
作者: Yeh, Cheng-chieh Hsu, Po-chun Chou, Ju-chieh Lee, Hung-yi Lee, Lin-shan Natl Taiwan Univ Coll Elect Engn & Comp Sci Taipei Taiwan
Speaking rate refers to the average number of phonemes within some unit time, while the rhythmic patterns refer to duration distributions for realizations of different phonemes within different phonetic structures. Bo... 详细信息
来源: 评论
Logician: A Unified End-to-End Neural Approach for Open-Domain Information Extraction  18
Logician: A Unified End-to-End Neural Approach for Open-Doma...
收藏 引用
11th ACM International Conference on Web Search and Data Mining
作者: Sun, Mingming Li, Xu Wang, Xin Fan, Miao Feng, Yue Li, Ping Baidu Res BDL Beijing Peoples R China
In this paper, we consider the problem of open information extraction (OIE) for extracting entity and relation level intermediate structures from sentences in open-domain. We focus on four types of valuable intermedia... 详细信息
来源: 评论
learning explicit video attributes from mid-level representation for video captioning
收藏 引用
COMPUTER VISION AND IMAGE UNDERSTANDING 2017年 163卷 126-138页
作者: Nian, Fudong Li, Teng Wang, Yan Wu, Xinyu Ni, Bingbing Xu, Changsheng Anhui Univ Minist Educ Key Lab Intelligent Comp & Signal Proc Hefei Anhui Peoples R China Chinese Acad Sci Inst Automat Natl Lab Pattern Recognit Beijing Peoples R China Chinese Acad Sci Shenzhen Inst Adv Technol Beijing Peoples R China Shanghai Jiao Tong Univ Shanghai Peoples R China
Recent works on video captioning mainly learn the map from low-level visual features to language description directly without explicitly representing the high-level semantic video concepts (e.g. objects, actions in th... 详细信息
来源: 评论