This study considers the problem of waveform design for colocated multiple-input multiple-output (MIMO) radars for multiple targets in the presence of multiple interferences in white Gaussian noise. Here, the authors ...
详细信息
This study considers the problem of waveform design for colocated multiple-input multiple-output (MIMO) radars for multiple targets in the presence of multiple interferences in white Gaussian noise. Here, the authors jointly design the transmit waveform and receive beamforming by a sequentialalgorithm. The proposed sequentialalgorithm maximises the minimum signal-to-interference-plus-noise ratio (SINR) to design both continuous and finite alphabet phase waveforms. In the case of continuous phase, all phases can be chosen in the waveform space, while in finite alphabet case, phases are only chosen from a confine set. Two important practical constraints of constant envelope' and similarity' are considered as well. The authors also have converted the waveform design problem into a quasi-convex optimisation problem which can be effectively solved by using convex optimisation toolbox (CVX). They have evaluated the performance of the matched filter output, beampattern and peak-to-average power ratio via numerical simulations and shown that the proposed sequential method achieves better SINR performance compared with existing MIMO radar transmit waveform design methods, for both single and multiple target scenarios.
暂无评论