Research in the field of nonparametric shape constrained regression has been intensive. However, only few publications explicitly deal with unimodality although there is need for such methods in applications, for exam...
详细信息
Research in the field of nonparametric shape constrained regression has been intensive. However, only few publications explicitly deal with unimodality although there is need for such methods in applications, for example, in dose-response analysis. In this article, we propose unimodal spline regression methods that make use of Bernstein-Schoenberg splines and their shape preservation property. To achieve unimodal and smooth solutions we use penalized splines, and extend the penalized spline approach toward penalizing against general parametric functions, instead of using just difference penalties. For tuning parameter selection under a unimodality constraint a restricted maximum likelihood and an alternative Bayesian approach for unimodal regression are developed. We compare the proposed methodologies to other common approaches in a simulation study and apply it to a dose-response data set. All results suggest that the unimodality constraint or the combination of unimodality and a penalty can substantially improve estimation of the functional relationship.
In many statistical regression and prediction problems, it is reasonable to assume monotone relationships between certain predictor variables and the outcome. Genomic effects on phenotypes are, for instance, often ass...
详细信息
In many statistical regression and prediction problems, it is reasonable to assume monotone relationships between certain predictor variables and the outcome. Genomic effects on phenotypes are, for instance, often assumed to be monotone. However, in some settings, it may be reasonable to assume a partially linear model, where some of the covariates can be assumed to have a linear effect. One example is a prediction model using both high-dimensional gene expression data, and low-dimensional clinical data, or when combining continuous and categorical covariates. We study methods for fitting the partially linear monotone model, where some covariates are assumed to have a linear effect on the response, and some are assumed to have a monotone (potentially nonlinear) effect. Most existing methods in the literature for fitting such models are subject to the limitation that they have to be provided the monotonicity directions a priori for the different monotone effects. We here present methods for fitting partially linear monotone models which perform both automatic variable selection, and monotonicity direction discovery. The proposed methods perform comparably to, or better than, existing methods, in terms of estimation, prediction, and variable selection performance, in simulation experiments in both classical and high-dimensional data settings.
作者:
Engebretsen, SolveigGlad, Ingrid K.Univ Oslo
Inst Basic Med Sci Oslo Ctr Biostat & Epidemiol Dept Biostat Postbox 1122 Blindern N-0317 Oslo Norway Norwegian Inst Publ Hlth
Div Infect Control & Environm Hlth Dept Infect Dis Epidemiol & Modelling Oslo Norway Univ Oslo
Dept Math Postbox 1053 Blindern N-0316 Oslo Norway
In numerous problems where the aim is to estimate the effect of a predictor variable on a response, one can assume a monotone relationship. For example, dose-effect models in medicine are of this type. In a multiple r...
详细信息
In numerous problems where the aim is to estimate the effect of a predictor variable on a response, one can assume a monotone relationship. For example, dose-effect models in medicine are of this type. In a multiple regression setting, additive monotone regression models assume that each predictor has a monotone effect on the response. In this paper, we present an overview and comparison of very recent frequentist methods for fitting additive monotone regression models. Three of the methods we present can be used both in the high dimensional setting, where the number of parameters p exceeds the number of observations n, and in the classical multiple setting where 1 < p <= n. However, many of the most recent methods only apply to the classical setting. The methods are compared through simulation experiments in terms of efficiency, prediction error and variable selection properties in both settings, and they are applied to the Boston housing data. We conclude with some recommendations on when the various methods perform best.
We find the local rate of convergence of the least squares estimator (LSE) of a one dimensional convex regression function when (a) a certain number of derivatives vanish at the point of interest, and (b) the true reg...
详细信息
We find the local rate of convergence of the least squares estimator (LSE) of a one dimensional convex regression function when (a) a certain number of derivatives vanish at the point of interest, and (b) the true regression function is locally affine. In each case we derive the limiting distribution of the LSE and its derivative. The pointwise limiting distributions depend on the second and third derivatives at 0 of the "invelope function" of the integral of a two-sided Brownian motion with polynomial drifts. We also investigate the inconsistency of the LSE and the unboundedness of its derivative at the boundary of the domain of the covariate space. An estimator of the argmin of the convex regression function is proposed and its asymptotic distribution is derived. Further, we present some new results on the characterization of the convex LSE that may be of independent interest.
We propose a novel nonparametric regression framework subject to the positive definiteness constraint. It offers a highly modular approach for estimating covariance functions of stationary processes. Our method can im...
详细信息
ISBN:
(纸本)9798400701191
We propose a novel nonparametric regression framework subject to the positive definiteness constraint. It offers a highly modular approach for estimating covariance functions of stationary processes. Our method can impose positive definiteness, as well as isotropy and monotonicity, on the estimators, and its hyperparameters can be decided using cross validation. We define our estimators by taking integral transforms of kernel-based distribution surrogates. We then use the iterated density estimation evolutionary algorithm, a variant of estimation of distribution algorithms, to fit the estimators. We also extend our method to estimate covariance functions for point-referenced data. Compared to alternative approaches, our method provides more reliable estimates for long-range dependence. Several numerical studies are performed to demonstrate the efficacy and performance of our method. Also, we illustrate our method using precipitation data from the Spatial Interpolation Comparison 97 project.
暂无评论