The conventional back-propagation algorithm cannot be applied to networks of units having hard-limiting output functions, because these functions cannot be differentiated. In this paper, a gradient descent algorithm s...
详细信息
The conventional back-propagation algorithm cannot be applied to networks of units having hard-limiting output functions, because these functions cannot be differentiated. In this paper, a gradient descent algorithm suitable for training multilayer feedforward networks of units having hard-limiting output functions, is presented. In order to get a differentiable output function for a hard-limiting unit, we utilized that if the bias of a unit in such a network is a random variable with smooth distribution function, the probability of the unit's output being in a particular state is a continuously differentiable function of the unit's inputs. Three simulation results are given, which show that the performance of this algorithm is similar to that of the conventional hack-propagation.
暂无评论