This paper analyzes the use of the, previously proposed, Parallel singlefront Genetic Algorithm (PSFGA) in applications in which the objective functions, the restrictions, and hence also solutions can change over the...
详细信息
ISBN:
(纸本)9783540730064
This paper analyzes the use of the, previously proposed, Parallel singlefront Genetic Algorithm (PSFGA) in applications in which the objective functions, the restrictions, and hence also solutions can change over the time. These dynamic optimization problems appear in quite different real applications with relevant socio-economic impacts. PSFGA uses a master process that distributes the population among the processors in the system (that evolve their corresponding solutions according to an island model), and collects and adjusts the set of local Pareto fronts found by each processor (this way, the master also allows an implicit communication among islands). The procedure exclusively uses non-dominated individuals for the selection and variation, and maintains the diversity of the approximation to the Pareto front by using a strategy based on a crowding distance.
暂无评论