咨询与建议

限定检索结果

文献类型

  • 49 篇 会议
  • 44 篇 期刊文献
  • 3 篇 学位论文

馆藏范围

  • 96 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 85 篇 工学
    • 54 篇 计算机科学与技术...
    • 31 篇 电气工程
    • 9 篇 石油与天然气工程
    • 5 篇 机械工程
    • 5 篇 动力工程及工程热...
    • 5 篇 信息与通信工程
    • 5 篇 土木工程
    • 4 篇 材料科学与工程(可...
    • 3 篇 力学(可授工学、理...
    • 3 篇 电子科学与技术(可...
    • 3 篇 控制科学与工程
    • 3 篇 建筑学
    • 3 篇 化学工程与技术
    • 3 篇 环境科学与工程(可...
    • 2 篇 水利工程
    • 2 篇 软件工程
    • 1 篇 纺织科学与工程
    • 1 篇 航空宇航科学与技...
    • 1 篇 生物医学工程(可授...
  • 8 篇 理学
    • 6 篇 生物学
    • 1 篇 数学
    • 1 篇 物理学
    • 1 篇 化学
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...
  • 2 篇 医学
    • 2 篇 药学(可授医学、理...
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...

主题

  • 96 篇 single objective...
  • 18 篇 multi-objective ...
  • 9 篇 differential evo...
  • 8 篇 mean-variance ma...
  • 8 篇 heuristic optimi...
  • 6 篇 swarm intelligen...
  • 5 篇 computationally ...
  • 5 篇 evolutionary alg...
  • 5 篇 evolutionary alg...
  • 4 篇 multi objective ...
  • 4 篇 cec2016 competit...
  • 4 篇 tcsc
  • 4 篇 genetic algorith...
  • 4 篇 multiobjective o...
  • 4 篇 evolutionary com...
  • 3 篇 strength pareto ...
  • 3 篇 self-adaptation
  • 3 篇 facts
  • 3 篇 simultaneous hea...
  • 3 篇 particle swarm o...

机构

  • 6 篇 univ duisburg es...
  • 5 篇 delft univ techn...
  • 4 篇 indian inst tech...
  • 3 篇 nanyang technol ...
  • 2 篇 indian inst tech...
  • 2 篇 indian inst tech...
  • 2 篇 department of ch...
  • 2 篇 xi an jiao tong ...
  • 2 篇 department of el...
  • 2 篇 minist educ key ...
  • 2 篇 institute of ele...
  • 1 篇 kerman univ kerm...
  • 1 篇 ton duc thang un...
  • 1 篇 xiangtan univ sc...
  • 1 篇 kyungpook natl u...
  • 1 篇 ryerson univ dep...
  • 1 篇 ningbo univ fac ...
  • 1 篇 xi an jiao tong ...
  • 1 篇 department of el...
  • 1 篇 xi an jiao tong ...

作者

  • 8 篇 kotecha prakash
  • 6 篇 rueda jose l.
  • 6 篇 erlich istvan
  • 5 篇 ali mostafa z.
  • 4 篇 kommadath remya
  • 3 篇 awad noor h.
  • 3 篇 maharana debasis
  • 3 篇 reynolds robert ...
  • 2 篇 diep quoc bao
  • 2 篇 lambrinidis geor...
  • 2 篇 vaisakh k.
  • 2 篇 prakash kotecha
  • 2 篇 josé l. rueda
  • 2 篇 suganthan ponnut...
  • 2 篇 reddy s. surende...
  • 2 篇 wildenhues sebas...
  • 2 篇 liu yongzhong
  • 2 篇 tsantili-kakouli...
  • 2 篇 sydulu m.
  • 2 篇 kang lixia

语言

  • 90 篇 英文
  • 5 篇 其他
  • 1 篇 中文
检索条件"主题词=single objective optimization"
96 条 记 录,以下是1-10 订阅
排序:
Hunting optimization: An New Framework for single objective optimization Problems
收藏 引用
IEEE ACCESS 2019年 7卷 31305-31320页
作者: Zhao, Zhenchong Wang, Xiaodan Wu, Chongming Lei, Lei Air Force Engn Univ Air & Missile Def Coll Xian 710051 Shaanxi Peoples R China Xijing Univ Coll Business Xian 710123 Shaanxi Peoples R China
Swarm intelligence algorithms play vital roles in objective optimization problems. To solve diverse and increasingly complicated problems, a newalgorithm is always desired. This paper proposes a new optimization algor... 详细信息
来源: 评论
Adaptive representation for single objective optimization
收藏 引用
SOFT COMPUTING 2005年 第8期9卷 594-605页
作者: Grosan, C Oltean, M Univ Babes Bolyai Fac Math & Comp Sci Dept Comp Sci R-3400 Cluj Napoca Romania
A new technique called Adaptive Representation Evolutionary Algorithm (AREA) is proposed in this paper. AREA involves dynamic alphabets for encoding solutions. The proposed adaptive representation is more compact than... 详细信息
来源: 评论
Real Parameter single objective optimization using Self-Adaptive Differential Evolution Algorithm with more Strategies
Real Parameter Single Objective Optimization using Self-Adap...
收藏 引用
IEEE Congress on Evolutionary Computation
作者: Brest, Janez Boskovic, Borko Zamuda, Ales Fister, Iztok Mezura-Montes, Efren Univ Maribor Fac Elect Engn & Comp Sci Inst Comp Sci Smetanova Ul 17 SLO-2000 Maribor Slovenia Univ Veracruzana Dept Inteligencia Artificial Xalapa 91000 Veracruz Mexico
A new differential evolution algorithm for single objective optimization is presented in this paper. The proposed algorithm uses a self-adaptation mechanism for parameter control, divides its population into more subp... 详细信息
来源: 评论
An Evolutionary Algorithm Using Multi-Strategy Combination for single objective optimization Problem  20
An Evolutionary Algorithm Using Multi-Strategy Combination f...
收藏 引用
20th IEEE International Conference on Computational Science and Engineering (CSE) / 15th IEEE/IFIP International Conference on Embedded and Ubiquitous Computing (EUC)
作者: Chen, Jinhui Chen, Junying Min, Huaqing South China Univ Technol Guangzhou Key Lab Robot & Intelligent Software Sch Software Engn Guangzhou 510006 Guangdong Peoples R China
In this paper, an evolutionary algorithm using multi strategy combination is proposed to solve single objective optimization problem. The algorithm is based on the combination of multi-operator evolutionary algorithms... 详细信息
来源: 评论
A Comparative Study of Transfer Functions in Binary Evolutionary Algorithms for single objective optimization  15th
A Comparative Study of Transfer Functions in Binary Evolutio...
收藏 引用
15th International Conference on Distributed Computing and Artificial Intelligence (DCAI)
作者: Sawhney, Ramit Shankar, Ravi Jain, Roopal Netaji Subhas Inst Technol Dept Comp Engn New Delhi India
Binary versions of evolutionary algorithms have emerged as alternatives to the state of the art methods for optimization in binary search spaces due to their simplicity and inexpensive computational cost. The adaption... 详细信息
来源: 评论
Research on Low-Carbon Building Design Strategies for Folk Dwellings in Hanzhong Based on single objective optimization
收藏 引用
BUILDINGS 2024年 第7期14卷 2154页
作者: Yu, Zhichun Guo, Zhenxing Ling, Zihan Chen, Yuren Xi An Jiao Tong Univ Sch Human Settlements & Civil Engn Xian 710049 Peoples R China
With the background of rural revitalization, the urgent demand for energy conservation and improved living quality arises alongside the issues of high energy consumption and low comfort in residential buildings. Locat... 详细信息
来源: 评论
Real Parameter single objective optimization using Self-Adaptive Differential Evolution Algorithm with more Strategies
Real Parameter Single Objective Optimization using Self-Adap...
收藏 引用
IEEE Congress on Evolutionary Computation
作者: Janez Brest Borko Boskovic Ales Zamuda Iztok Fister Efren Mezura-Montes Institute of Computer Science Faculty of Electrical Engineering and Computer Science University of Maribor Departamento de Inteligencia Artificial Universidad Veracruzana
A new differential evolution algorithm for single objective optimization is presented in this paper. The proposed algorithm uses a self-adaptation mechanism for parameter control, divides its population into more subp... 详细信息
来源: 评论
Testing MVMO on Learning-based Real-Parameter single objective Benchmark optimization Problems
Testing MVMO on Learning-based Real-Parameter Single Objecti...
收藏 引用
IEEE Congress on Evolutionary Computation (CEC)
作者: Rueda, Jose L. Erlich, Istvan Delft Univ Technol Dept Elect Sustainable Energy Delft Netherlands Univ Duisburg Essen Inst Elect Power Syst Duisburg Germany
Mean-variance mapping optimization (MVMO) is an emerging evolutionary algorithm, which adopts a single-solution based approach and performs evolutionary operations within a normalized range of the search for all optim... 详细信息
来源: 评论
Modified Adaptive Bats Sonar Algorithm with Doppler Effect Mechanism for Solving single objective Unconstrained optimization Problems  15
Modified Adaptive Bats Sonar Algorithm with Doppler Effect M...
收藏 引用
IEEE 15th International Colloquium on Signal Processing and its Applications (CSPA)
作者: Azlan, N. A. Yahya, N. M. Univ Malaysia Pahang Fac Mfg Engn Cybernat & Syst Engn Lab Pekan Malaysia
A modified adaptive bats sonar algorithm with Doppler Effect (MABSA-DE) is a new algorithm with an element of Doppler Effect theory that helped the transmitted bats' beam towards a superior position. The performan... 详细信息
来源: 评论
Runtime Analysis for Maximizing Population Diversity in single-objective optimization  14
Runtime Analysis for Maximizing Population Diversity in Sing...
收藏 引用
16th Genetic and Evolutionary Computation Conference (GECCO)
作者: Gao, Wanru Neumann, Frank Univ Adelaide Optimisat & Logist Sch Comp Sci Adelaide SA Australia
Recently Ulrich and Thiele [14] have introduced evolutionary algorithms for the mixed multi-objective problem of maximizing fitness as well as diversity in the decision space. Such an approach allows to generate a div... 详细信息
来源: 评论