咨询与建议

限定检索结果

文献类型

  • 158 篇 期刊文献
  • 92 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 252 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 235 篇 工学
    • 124 篇 计算机科学与技术...
    • 87 篇 电气工程
    • 40 篇 控制科学与工程
    • 33 篇 信息与通信工程
    • 24 篇 机械工程
    • 18 篇 软件工程
    • 15 篇 生物医学工程(可授...
    • 14 篇 仪器科学与技术
    • 12 篇 石油与天然气工程
    • 8 篇 材料科学与工程(可...
    • 8 篇 动力工程及工程热...
    • 8 篇 电子科学与技术(可...
    • 8 篇 测绘科学与技术
    • 5 篇 土木工程
    • 4 篇 化学工程与技术
    • 2 篇 建筑学
    • 2 篇 纺织科学与工程
    • 2 篇 农业工程
  • 47 篇 理学
    • 19 篇 生物学
    • 11 篇 物理学
    • 9 篇 化学
    • 8 篇 地球物理学
    • 4 篇 数学
    • 3 篇 地理学
    • 3 篇 系统科学
    • 2 篇 统计学(可授理学、...
  • 30 篇 医学
    • 13 篇 基础医学(可授医学...
    • 13 篇 临床医学
    • 3 篇 医学技术(可授医学...
  • 23 篇 管理学
    • 21 篇 管理科学与工程(可...
  • 8 篇 农学
  • 1 篇 法学
  • 1 篇 教育学

主题

  • 252 篇 sparse autoencod...
  • 63 篇 deep learning
  • 24 篇 fault diagnosis
  • 18 篇 feature extracti...
  • 16 篇 deep neural netw...
  • 11 篇 machine learning
  • 9 篇 dimensionality r...
  • 7 篇 support vector m...
  • 7 篇 deep belief netw...
  • 7 篇 convolutional ne...
  • 6 篇 image classifica...
  • 6 篇 feature selectio...
  • 6 篇 convolutional ne...
  • 6 篇 unsupervised lea...
  • 5 篇 compressed sensi...
  • 5 篇 anomaly detectio...
  • 5 篇 face recognition
  • 5 篇 autoencoder
  • 5 篇 unsupervised fea...
  • 5 篇 convolutional au...

机构

  • 6 篇 xian univ techno...
  • 6 篇 tianshui normal ...
  • 3 篇 nanyang technol ...
  • 2 篇 nanjing normal u...
  • 2 篇 zhongnan univ ec...
  • 2 篇 northeast petr u...
  • 2 篇 chinese acad sci...
  • 2 篇 hong kong univ s...
  • 2 篇 northeastern uni...
  • 2 篇 china univ petr ...
  • 2 篇 northwestern pol...
  • 2 篇 hebei univ affil...
  • 2 篇 kasetsart univ g...
  • 2 篇 ming chuan univ ...
  • 2 篇 hubei key lab ad...
  • 2 篇 shenzhen institu...
  • 2 篇 china univ geosc...
  • 2 篇 zhengzhou univ l...
  • 2 篇 natl cent univ d...
  • 2 篇 natl inst techno...

作者

  • 7 篇 xie guo
  • 7 篇 yang jing
  • 7 篇 yang yanxi
  • 3 篇 hu jun
  • 3 篇 nair madhu s.
  • 3 篇 zhang yu-dong
  • 3 篇 wang tianzhen
  • 3 篇 xin bin
  • 3 篇 wang shui-hua
  • 2 篇 zhu zhongkui
  • 2 篇 chen kunjin
  • 2 篇 li xin
  • 2 篇 wu min
  • 2 篇 shen changqing
  • 2 篇 kim ji-seon
  • 2 篇 liu ming
  • 2 篇 liu hongyi
  • 2 篇 lin feng
  • 2 篇 hou xiao-xia
  • 2 篇 hou zengguang

语言

  • 242 篇 英文
  • 5 篇 中文
  • 4 篇 其他
  • 1 篇 法文
检索条件"主题词=sparse AutoEncoder"
252 条 记 录,以下是91-100 订阅
排序:
Stacked sparse autoencoder-Based Deep Network for Fault Diagnosis of Rotating Machinery
收藏 引用
IEEE ACCESS 2017年 5卷 15066-15079页
作者: Qi, Yumei Shen, Changqing Wang, Dong Shi, Juanjuan Jiang, Xingxing Zhu, Zhongkui Soochow Univ Sch Urban Rail Transportat Suzhou 215131 Peoples R China City Univ Hong Kong Dept Syst Engn & Engn Management Hong Kong Hong Kong Peoples R China
As a breakthrough in the field of machine fault diagnosis, deep learning has great potential to extract more abstract and discriminative features automatically without much prior knowledge compared with other methods,... 详细信息
来源: 评论
Credit Card Fraud Detection Using sparse autoencoder and Generative Adversarial Network  9
Credit Card Fraud Detection Using Sparse Autoencoder and Gen...
收藏 引用
9th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)
作者: Chen, Jian Shen, Yao Ali, Riaz Shanghai Jiao Tong Univ Dept Comp Sci & Engn Shanghai Peoples R China
Current credit card detection methods usually utilize the idea of classification, requiring a balanced training dataset which should contain both positive and negative samples. However, we often get highly skewed data... 详细信息
来源: 评论
Image Super-Resolution Algorithm Based on an Improved sparse autoencoder
收藏 引用
INFORMATION 2018年 第1期9卷 11页
作者: Huang, Detian Huang, Weiqin Yuan, Zhenguo Lin, Yanming Zhang, Jian Zheng, Lixin Huaqiao Univ Coll Engn 269 Chenghuabei Rd Quanzhou 362021 Peoples R China Shantou Univ Dept Elect Engn 243 Daxue Rd Shantou 515063 Peoples R China
Due to the limitations of the resolution of the imaging system and the influence of scene changes and other factors, sometimes only low-resolution images can be acquired, which cannot satisfy the practical application... 详细信息
来源: 评论
A sparse autoencoder Based Denosing the Spectrum Signal in LIBS
A Sparse Autoencoder Based Denosing the Spectrum Signal in L...
收藏 引用
第30届中国控制与决策会议
作者: Shibing Ye Zhixing Niu Peng Yang Junqing Sun Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology Tianjin University of Technology
Based on laser induced breakdown spectroscopy(LIBS) technique, the content of the main elements in the liquid steel of carbon steel alloy can be detected in real time during melting process. In order to detect the liq... 详细信息
来源: 评论
Pseudoinverse Learning Algorithom for Fast sparse autoencoder Training
Pseudoinverse Learning Algorithom for Fast Sparse Autoencode...
收藏 引用
IEEE Congress on Evolutionary Computation
作者: Bingxin Xu Ping Guo Beijing Key Laboratory of Information Service Engineering Beijing Union University Beijing China Image Processing and Pattern Recognition Laboratory Beijing Normal University Beijing 100875 China
sparse autoencoder is one approach to automatically learn features from unlabeled data and received significant attention during the development of deep neural networks. However, the learning algorithm of sparse autoe... 详细信息
来源: 评论
Face recognition based on deep aggregated sparse autoencoder network
Face recognition based on deep aggregated sparse autoencoder...
收藏 引用
第37届中国控制会议
作者: Guofeng Zou Dingyi Lin Gui-xia Fu Jin Shen Mingliang Gao College of Electrical and Electronic Engineering Shandong University of Technology
sparse autoencoder network is sensitive to face noise,and the learning process is easy to ignore the face structure *** this problem,we propose a face recognition approach fused sub-region LBP feature and deep aggrega... 详细信息
来源: 评论
sparse autoencoder based deep neural network for voxelwise detection of cerebral microbleed  22
Sparse Autoencoder based deep neural network for voxelwise d...
收藏 引用
22nd IEEE International Conference on Parallel and Distributed Systems (ICPADS)
作者: Zhang, Yu-Dong Hou, Xiao-Xia Lv, Yi-Ding Chen, Hong Zhang, Yin Wang, Shui-Hua Nanjing Normal Univ Sch Comp Sci & Technol Nanjing 210023 Jiangsu Peoples R China Hunan Prov Key Lab Network Invest Technol Changsha 410138 Hunan Peoples R China Nanjing Med Univ Affiliated Hosp 1 Dept Neurol Nanjing 210029 Jiangsu Peoples R China Nanjing Med Univ Dept Psychiat Nanjing 210029 Jiangsu Peoples R China Zhongnan Univ Econ & Law Sch Informat & Safety Engn Wuhan 430073 Hubei Peoples R China CUNY City Coll New York Dept Elect Engn New York NY 10031 USA
In order to detect cerebral microbleed more efficiently, we developed a novel computer-aided detection method based on susceptibility-weighted imaging. We enrolled five CADASIL patients and five healthy controls. We u... 详细信息
来源: 评论
Self-Taught Learning Based on sparse autoencoder for E-Nose in Wound Infection Detection
收藏 引用
SENSORS 2017年 第10期17卷 2279页
作者: He, Peilin Jia, Pengfei Qiao, Siqi Duan, Shukai Southwest Univ Coll Elect & Informat Engn Chongqing 400715 Peoples R China
For an electronic nose (E-nose) in wound infection distinguishing, traditional learning methods have always needed large quantities of labeled wound infection samples, which are both limited and expensive;thus, we int... 详细信息
来源: 评论
Robust Transfer Learning in Multi-Robot Systems by Using sparse autoencoder  19
Robust Transfer Learning in Multi-Robot Systems by Using Spa...
收藏 引用
19th IEEE International Conference on Soft Computing and Measurements (SCM)
作者: Utkin, Lev V. Popov, Sergey G. Zhuk, Y. A. Peter Great St Petersburg Polytech Univ Telemat Dept St Petersburg Russia ITMO Univ Dept Comp Educ Technol St Petersburg Russia
Robust algorithms for transfer learning in multi-robot systems based on elements of the deep learning are proposed in the paper. The algorithms are based on using the sparse autoencoder. The main ideas underlying the ... 详细信息
来源: 评论
Asymmetry Analysis with sparse autoencoder in Mammography  16
Asymmetry Analysis with Sparse Autoencoder in Mammography
收藏 引用
8th International Conference on Internet Multimedia Computing and Service (ICIMCS)
作者: Yang, Dongxiao Wang, Ying Jiao, Zhicheng Xidian Univ Sch Elect Engn VIPS Lab Xian 710071 Peoples R China
With the development of medical image processing methods, computer-aided detection systems sprang up, which could assist the diagnosis of radiologists, reducing fatigue, and greatly improve the accuracy and efficiency... 详细信息
来源: 评论