咨询与建议

限定检索结果

文献类型

  • 157 篇 期刊文献
  • 92 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 251 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 234 篇 工学
    • 123 篇 计算机科学与技术...
    • 86 篇 电气工程
    • 40 篇 控制科学与工程
    • 32 篇 信息与通信工程
    • 24 篇 机械工程
    • 18 篇 软件工程
    • 15 篇 生物医学工程(可授...
    • 14 篇 仪器科学与技术
    • 12 篇 石油与天然气工程
    • 8 篇 材料科学与工程(可...
    • 8 篇 动力工程及工程热...
    • 8 篇 电子科学与技术(可...
    • 8 篇 测绘科学与技术
    • 5 篇 土木工程
    • 4 篇 化学工程与技术
    • 2 篇 建筑学
    • 2 篇 纺织科学与工程
    • 2 篇 农业工程
  • 47 篇 理学
    • 19 篇 生物学
    • 11 篇 物理学
    • 9 篇 化学
    • 8 篇 地球物理学
    • 4 篇 数学
    • 3 篇 地理学
    • 3 篇 系统科学
    • 2 篇 统计学(可授理学、...
  • 30 篇 医学
    • 13 篇 基础医学(可授医学...
    • 13 篇 临床医学
    • 3 篇 医学技术(可授医学...
  • 23 篇 管理学
    • 21 篇 管理科学与工程(可...
  • 8 篇 农学
  • 1 篇 法学
  • 1 篇 教育学

主题

  • 251 篇 sparse autoencod...
  • 62 篇 deep learning
  • 24 篇 fault diagnosis
  • 17 篇 feature extracti...
  • 16 篇 deep neural netw...
  • 11 篇 machine learning
  • 8 篇 dimensionality r...
  • 7 篇 support vector m...
  • 7 篇 deep belief netw...
  • 7 篇 convolutional ne...
  • 6 篇 image classifica...
  • 6 篇 feature selectio...
  • 6 篇 unsupervised lea...
  • 5 篇 compressed sensi...
  • 5 篇 anomaly detectio...
  • 5 篇 face recognition
  • 5 篇 autoencoder
  • 5 篇 unsupervised fea...
  • 5 篇 convolutional au...
  • 5 篇 convolutional ne...

机构

  • 6 篇 xian univ techno...
  • 6 篇 tianshui normal ...
  • 3 篇 nanyang technol ...
  • 2 篇 nanjing normal u...
  • 2 篇 zhongnan univ ec...
  • 2 篇 northeast petr u...
  • 2 篇 chinese acad sci...
  • 2 篇 hong kong univ s...
  • 2 篇 northeastern uni...
  • 2 篇 china univ petr ...
  • 2 篇 northwestern pol...
  • 2 篇 hebei univ affil...
  • 2 篇 kasetsart univ g...
  • 2 篇 ming chuan univ ...
  • 2 篇 hubei key lab ad...
  • 2 篇 shenzhen institu...
  • 2 篇 china univ geosc...
  • 2 篇 zhengzhou univ l...
  • 2 篇 natl cent univ d...
  • 2 篇 natl inst techno...

作者

  • 7 篇 xie guo
  • 7 篇 yang jing
  • 7 篇 yang yanxi
  • 3 篇 hu jun
  • 3 篇 nair madhu s.
  • 3 篇 zhang yu-dong
  • 3 篇 wang tianzhen
  • 3 篇 xin bin
  • 3 篇 wang shui-hua
  • 2 篇 zhu zhongkui
  • 2 篇 chen kunjin
  • 2 篇 li xin
  • 2 篇 wu min
  • 2 篇 shen changqing
  • 2 篇 kim ji-seon
  • 2 篇 liu ming
  • 2 篇 liu hongyi
  • 2 篇 lin feng
  • 2 篇 hou xiao-xia
  • 2 篇 hou zengguang

语言

  • 241 篇 英文
  • 5 篇 中文
  • 4 篇 其他
  • 1 篇 法文
检索条件"主题词=sparse AutoEncoder"
251 条 记 录,以下是121-130 订阅
排序:
Local Entropy Based Remora Optimization and sparse autoencoders for Cancer Diagnosis Through Microarray Gene Expression Analysis
收藏 引用
IEEE ACCESS 2024年 12卷 39285-39299页
作者: Bharanidharan, N. Chakravarthy, S. R. Sannasi Venkatesan, Vinoth Kumar Abbas, Mohamed Mahesh, T. R. Mohan, E. Venkatesan, Krishnamoorthy Vellore Inst Technol Sch Comp Sci Engn & Informat Syst SCORE Vellore 632014 India Bannari Amman Inst Technol Dept ECE Sathyamangalam 638401 India King Khalid Univ Coll Engn Dept Elect Engn Abha 61421 Saudi Arabia JAIN Deemed Univ Dept Comp Sci & Engn Bengaluru India SIMATS Saveetha Sch Engn Dept Elect & Commun Engn Chennai Tamil Nadu India Arba Minch Univ Dept Math Units Basic Sci Sawla Campus Arba Minch 4400 Ethiopia
Gene expression analysis can be used as a tool to detect cancer and the type of cancer in its early stages. However, the computational complexity for gene expression analysis is quite high due to the large amount of n... 详细信息
来源: 评论
An Effective sparse autoencoders based Deep Learning Framework for fMRI Scans Classification  22
An Effective Sparse Autoencoders based Deep Learning Framewo...
收藏 引用
22nd International Conference on Enterprise Information Systems (ICEIS)
作者: Mahmoud, Abeer M. Karamti, Hanen Alrowais, Fadwa Ain Shams Univ Fac Comp & Informat Sci Cairo Egypt Princess Nourah bint Abdulrahman Univ Coll Comp & Informat Sci Comp Sci Dept POB 84428 Riyadh Saudi Arabia Univ Sfax MIRACL Lab ISIMS BP 242 Sfax 3021 Tunisia
Deep Learning (DL) identifies features of medical scans automatically in a way very near to expert doctors and sometimes over beats in treatment procedures. In fact, it increases model generalization as it doesn't... 详细信息
来源: 评论
Class-Specific Pre-trained sparse autoencoders for Learning Effective Features for Document Classification  8
Class-Specific Pre-trained Sparse Autoencoders for Learning ...
收藏 引用
8th Computer Science and Electronic Engineering (CEEC)
作者: Abdulhussain, Maysa I. Gan, John Q. Univ Essex Sch Comp Sci & Elect Engn Colchester C04 3SQ Essex England Univ Baghdad Dept Comp Sci Coll Sci Baghdad Iraq
sparse autoencoder is a commonly used deep learning approach for automatically learning features from unlabelled data (unsupervised feature learning). This paper proposes class-specific (supervised) pre-trained approa... 详细信息
来源: 评论
SPRBF-ABLS: a novel attention-based broad learning systems with sparse polynomial-based radial basis function neural networks
收藏 引用
JOURNAL OF INTELLIGENT MANUFACTURING 2023年 第4期34卷 1779-1794页
作者: Wang, Jing Lyu, Shubin Chen, C. L. Philip Zhao, Huimin Lin, Zhengchun Quan, Pingsheng Guangdong Polytech Normal Univ Fac Comp Sci Guangzhou Peoples R China Univ Macau Fac Sci & Technol Macau 99999 Peoples R China South China Univ Technol Guangzhou Peoples R China
Broad learning system (BLS) is a fast and efficient learning model. However, BLS has limited representation capacity in the feature mapping layer. Additionally, BLS lacks local mapping capability. To address these pro... 详细信息
来源: 评论
sparse auto encoder driven support vector regression based deep learning model for predicting network intrusions
收藏 引用
PEER-TO-PEER NETWORKING AND APPLICATIONS 2021年 第4期14卷 2419-2429页
作者: Preethi, D. Khare, Neelu Vellore Inst Technol Sch Informat Technol & Engn Vellore Tamil Nadu India
The Network Intrusion Detection System (NIDS) assumes a prominent aspect in ensuring network security. It serves better than traditional network security mechanisms, such as firewall systems. The result of the NIDS in... 详细信息
来源: 评论
Anomaly Feature Learning for Unsupervised Change Detection in Heterogeneous Images: A Deep sparse Residual Model
收藏 引用
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 2020年 13卷 588-600页
作者: Touati, Redha Mignotte, Max Dahmane, Mohamed Univ Montreal Fac Arts & Sci DIRO Vis Lab Montreal PQ H3C 3J7 Canada CRIM R&D Vis Dept Montreal PQ H3N 1M3 Canada
In this article, we propose a novel and simple automatic model based on multimodal anomaly feature learning in a residual space, aiming at solving the binary classification problem of temporal change detection (CD) be... 详细信息
来源: 评论
Enhancing the reliability of protection scheme for PV integrated microgrid by discriminating between array faults and symmetrical line faults using sparse auto encoder
收藏 引用
IET RENEWABLE POWER GENERATION 2019年 第2期13卷 308-317页
作者: Manohar, Murli Koley, Ebha Ghosh, Subhojit Natl Inst Technol Dept Elect Engn Raipur CG India
The ever increasing power demand and stress on reducing carbon footprint have paved the way for widespread use of photovoltaic (PV) integrated microgrid. However, the development of a reliable protection scheme for PV... 详细信息
来源: 评论
Locally weighted embedding topic modeling by markov random walk structure approximation and sparse regularization
收藏 引用
NEUROCOMPUTING 2018年 285卷 35-50页
作者: Wei, Chao Luo, Senlin Pan, Limin Wu, Zhouting Zhang, Ji Safi, Qamas Gul Khan Beijing Inst Technol Sch Informat & Elect Beijing 100081 Peoples R China Univ Engn & Technol Dept Comp Sci Taxila 47050 Punjab Pakistan
Topic model is a practical method for learning interpretable models of text corpora and have become a key problem of document representation. Some recently proposed topic models incorporate the intrinsic geometrical i... 详细信息
来源: 评论
H-BLS: a hierarchical broad learning system with deep and sparse feature learning
收藏 引用
APPLIED INTELLIGENCE 2023年 第1期53卷 153-168页
作者: Guo, Wei Chen, Shuangshuang Yuan, Xiaofeng Yancheng Teachers Univ Jiangsu Prov Key Construct Lab Big Data Psychol & Yancheng 224002 Peoples R China Yancheng Teachers Univ Coll Informat Engn Yancheng 224002 Peoples R China
Broad learning system (BLS) is an emerging machine learning algorithm with high efficiency and good approximation capability. It has been proved that BLS can learn hundreds of times faster than traditional deep learni... 详细信息
来源: 评论
An automated intrusion detection system in IoT system using Attention based Deep Bidirectional sparse Auto Encoder model
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2024年 305卷
作者: Swathi, K. Bindu, G. Hima GITAM Deemed Univ Dept Comp Sci & Engn Hyderabad 502329 Telangana India GITAM Sch Technol Dept Comp Sci & Engn Hyderabad 502329 Telangana India
Nowadays, the Internet of Things (IoT) is a smart network connected to the Internet for transmitting gathered data with verified protocols. Attackers frequently use communication protocol defects as the basis for thei... 详细信息
来源: 评论