咨询与建议

限定检索结果

文献类型

  • 157 篇 期刊文献
  • 92 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 251 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 234 篇 工学
    • 123 篇 计算机科学与技术...
    • 86 篇 电气工程
    • 40 篇 控制科学与工程
    • 32 篇 信息与通信工程
    • 24 篇 机械工程
    • 18 篇 软件工程
    • 15 篇 生物医学工程(可授...
    • 14 篇 仪器科学与技术
    • 12 篇 石油与天然气工程
    • 8 篇 材料科学与工程(可...
    • 8 篇 动力工程及工程热...
    • 8 篇 电子科学与技术(可...
    • 8 篇 测绘科学与技术
    • 5 篇 土木工程
    • 4 篇 化学工程与技术
    • 2 篇 建筑学
    • 2 篇 纺织科学与工程
    • 2 篇 农业工程
  • 47 篇 理学
    • 19 篇 生物学
    • 11 篇 物理学
    • 9 篇 化学
    • 8 篇 地球物理学
    • 4 篇 数学
    • 3 篇 地理学
    • 3 篇 系统科学
    • 2 篇 统计学(可授理学、...
  • 30 篇 医学
    • 13 篇 基础医学(可授医学...
    • 13 篇 临床医学
    • 3 篇 医学技术(可授医学...
  • 23 篇 管理学
    • 21 篇 管理科学与工程(可...
  • 8 篇 农学
  • 1 篇 法学
  • 1 篇 教育学

主题

  • 251 篇 sparse autoencod...
  • 62 篇 deep learning
  • 24 篇 fault diagnosis
  • 17 篇 feature extracti...
  • 16 篇 deep neural netw...
  • 11 篇 machine learning
  • 8 篇 dimensionality r...
  • 7 篇 support vector m...
  • 7 篇 deep belief netw...
  • 7 篇 convolutional ne...
  • 6 篇 image classifica...
  • 6 篇 feature selectio...
  • 6 篇 unsupervised lea...
  • 5 篇 compressed sensi...
  • 5 篇 anomaly detectio...
  • 5 篇 face recognition
  • 5 篇 autoencoder
  • 5 篇 unsupervised fea...
  • 5 篇 convolutional au...
  • 5 篇 convolutional ne...

机构

  • 6 篇 xian univ techno...
  • 6 篇 tianshui normal ...
  • 3 篇 nanyang technol ...
  • 2 篇 nanjing normal u...
  • 2 篇 zhongnan univ ec...
  • 2 篇 northeast petr u...
  • 2 篇 chinese acad sci...
  • 2 篇 hong kong univ s...
  • 2 篇 northeastern uni...
  • 2 篇 china univ petr ...
  • 2 篇 northwestern pol...
  • 2 篇 hebei univ affil...
  • 2 篇 kasetsart univ g...
  • 2 篇 ming chuan univ ...
  • 2 篇 hubei key lab ad...
  • 2 篇 shenzhen institu...
  • 2 篇 china univ geosc...
  • 2 篇 zhengzhou univ l...
  • 2 篇 natl cent univ d...
  • 2 篇 natl inst techno...

作者

  • 7 篇 xie guo
  • 7 篇 yang jing
  • 7 篇 yang yanxi
  • 3 篇 hu jun
  • 3 篇 nair madhu s.
  • 3 篇 zhang yu-dong
  • 3 篇 wang tianzhen
  • 3 篇 xin bin
  • 3 篇 wang shui-hua
  • 2 篇 zhu zhongkui
  • 2 篇 chen kunjin
  • 2 篇 li xin
  • 2 篇 wu min
  • 2 篇 shen changqing
  • 2 篇 kim ji-seon
  • 2 篇 liu ming
  • 2 篇 liu hongyi
  • 2 篇 lin feng
  • 2 篇 hou xiao-xia
  • 2 篇 hou zengguang

语言

  • 241 篇 英文
  • 5 篇 中文
  • 4 篇 其他
  • 1 篇 法文
检索条件"主题词=sparse AutoEncoder"
251 条 记 录,以下是131-140 订阅
排序:
Alzheimer’s Disease Stage Classification Using a Deep Transfer Learning and sparse Auto Encoder Method
收藏 引用
Computers, Materials & Continua 2023年 第7期76卷 793-811页
作者: Deepthi K.Oommen J.Arunnehru Department of Computer Science and Engineering SRM Institute of Science and TechnologyVadapalaniChennai600026TamilnaduIndia
Alzheimer’s Disease(AD)is a progressive neurological *** diagnosis of this illness using conventional methods is very *** Learning(DL)is one of the finest solutions for improving diagnostic procedures’performance an... 详细信息
来源: 评论
Intelligent condition monitoring method for bearing faults from highly compressed measurements using sparse over-complete features
收藏 引用
MECHANICAL SYSTEMS AND SIGNAL PROCESSING 2018年 99卷 459-477页
作者: Ahmed, H. O. A. Wong, M. L. D. Nandi, A. K. Brunel Univ London Dept Elect & Comp Engn Uxbridge UB8 3PH Middx England Heriot Watt Univ Malaysia Precinct 5 Putrajaya 62200 Malaysia Tongji Univ Coll Elect & Informat Engn Key Lab Embedded Syst & Serv Comp Shanghai Peoples R China
Condition classification of rolling element bearings in rotating machines is important to prevent the breakdown of industrial machinery. A considerable amount of literature has been published on bearing faults classif... 详细信息
来源: 评论
A Generative Model for sparse Hyperparameter Determination
收藏 引用
IEEE TRANSACTIONS ON BIG DATA 2018年 第1期4卷 2-10页
作者: Wan, Zhiqiang He, Haibo Tang, Bo Univ Rhode Isl Dept Elect Comp & Biomed Engn Kingston RI 02881 USA
sparse autoencoder is an unsupervised feature extractor and has been widely used in the machine learning and data mining community. However, a sparse hyperparameter has to be determined to balance the trade-off betwee... 详细信息
来源: 评论
A sparse FEATURE REPRESENTATION FOR GENETIC DATA ANALYSIS  14
A SPARSE FEATURE REPRESENTATION FOR GENETIC DATA ANALYSIS
收藏 引用
International Conference on Machine Learning and Cybernetics (ICMLC)
作者: Liu, Hua-Hao Huang, Pei-Jie Lin, Pi-Yuan Lin, Wen-Hu Qi, Pei-Heng Song, Chong-Hua South China Agr Univ Coll Math & Informat Guangzhou 510642 Guangdong Peoples R China
Feature representation is one of the key research issues in machine learning. In some applications with high dimensionality of data, e.g. genomic microarray data, obtaining a good feature representation with effective... 详细信息
来源: 评论
Patch-based sparse and Convolutional autoencoders for Anomaly Detection in Hyperspectral Images  28
Patch-based Sparse and Convolutional Autoencoders for Anomal...
收藏 引用
28th Iranian Conference on Electrical Engineering (ICEE)
作者: Rezvanian, Amir Reza Imani, Maryam Ghassemian, Hassan Tarbiat Modares Univ Fac Elect & Comp Engn Image Proc & Informat Anal Lab Tehran Iran
Anomaly target detection is one of the major aims of Hyperspectral Image (HSI) processing. Since anomalous pixels Compose a small fraction of the hyperspectral data cube, the use of supervised neural networks presents... 详细信息
来源: 评论
Fuzzy Rule Reduction using sparse Auto-Encoders
Fuzzy Rule Reduction using Sparse Auto-Encoders
收藏 引用
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
作者: Sevakula, Rahul K. Verma, Nishchal K. Indian Inst Technol Kanpur Dept Elect Engn Kanpur Uttar Pradesh India
Fuzzy Rule based regression, classification and control have found great use in modern applications due to its simplicity, flexibility and capability. A key issue in all such methods is the computation time. Computati... 详细信息
来源: 评论
Feature Abstraction for Early Detection of Multi-type of Dementia with sparse Auto-encoder
Feature Abstraction for Early Detection of Multi-type of Dem...
收藏 引用
IEEE International Conference on Systems, Man, and Cybernetics (SMC)
作者: Alkabawi, Elham M. Hilal, Allaa R. Basir, Otman A. Univ Waterloo Dept Elect & Comp Engn Waterloo ON Canada
With millions of people suffering from dementia worldwide, the global prevalence of dementia has a significant impact on the patients' lives, their caregivers' physical and emotional states, and the global eco... 详细信息
来源: 评论
DETECTION OF LUMEN AND MEDIA-ADVENTITIA BORDERS IN IVUS IMAGES USING sparse AUTO-ENCODER NEURAL NETWORK  14
DETECTION OF LUMEN AND MEDIA-ADVENTITIA BORDERS IN IVUS IMAG...
收藏 引用
IEEE 14th International Symposium on Biomedical Imaging (ISBI) - From Nano to Macro
作者: Su, Shengran Gao, Zhifan Zhang, Heye Lin, Qiang Hau, William Kongto Li, Shuo Zhejiang Univ Technol Coll Sci Hangzhou Zhejiang Peoples R China Chinese Acad Sci Shenzhen Inst Adv Technol Beijing Peoples R China Univ Chinese Acad Sci Shenzhen Coll Adv Technol Beijing Peoples R China Univ Hong Kong LiKaShing Fac Med Hong Kong Hong Kong Peoples R China Univ Western Ontario London ON Canada
This paper describes an artificial neural network (ANN) method that employs a feature-learning algorithm to detect the lumen and MA borders in intravascular ultrasound (IVUS) images. Three types of imaging features in... 详细信息
来源: 评论
Representation learning via an integrated autoencoder for unsupervised domain adaptation
收藏 引用
Frontiers of Computer Science 2023年 第5期17卷 75-87页
作者: Yi ZHU Xindong WU Jipeng QIANG Yunhao YUAN Yun LI School of Information Engineering Yangzhou UniversityYangzhou 225127China Key Laboratory of Knowledge Engineering with Big Data(Ministry of Education of China) Hefei University of TechnologyHefei 230009China School of Computer Science and Information Engineering Hefei University of TechnologyHefei 230601China
The purpose of unsupervised domain adaptation is to use the knowledge of the source domain whose data distribution is different from that of the target domain for promoting the learning task in the target *** key bott... 详细信息
来源: 评论
Research on the remaining useful life prediction method for lithium-ion batteries by fusion of feature engineering and deep learning
收藏 引用
APPLIED ENERGY 2024年 358卷
作者: Zhao, Bo Zhang, Weige Zhang, Yanru Zhang, Caiping Zhang, Chi Zhang, Junwei Beijing Jiaotong Univ Natl Act Distribut Network Technol Res Ctr NANTEC Beijing 100044 Peoples R China
Lithium-ion batteries age continuously during usage due to their characteristics and the influence of various external factors, but as degradation deepens, it can lead to an apparent decrease in battery safety and rel... 详细信息
来源: 评论