咨询与建议

限定检索结果

文献类型

  • 158 篇 期刊文献
  • 92 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 252 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 235 篇 工学
    • 124 篇 计算机科学与技术...
    • 87 篇 电气工程
    • 40 篇 控制科学与工程
    • 33 篇 信息与通信工程
    • 24 篇 机械工程
    • 18 篇 软件工程
    • 15 篇 生物医学工程(可授...
    • 14 篇 仪器科学与技术
    • 12 篇 石油与天然气工程
    • 8 篇 材料科学与工程(可...
    • 8 篇 动力工程及工程热...
    • 8 篇 电子科学与技术(可...
    • 8 篇 测绘科学与技术
    • 5 篇 土木工程
    • 4 篇 化学工程与技术
    • 2 篇 建筑学
    • 2 篇 纺织科学与工程
    • 2 篇 农业工程
  • 47 篇 理学
    • 19 篇 生物学
    • 11 篇 物理学
    • 9 篇 化学
    • 8 篇 地球物理学
    • 4 篇 数学
    • 3 篇 地理学
    • 3 篇 系统科学
    • 2 篇 统计学(可授理学、...
  • 30 篇 医学
    • 13 篇 基础医学(可授医学...
    • 13 篇 临床医学
    • 3 篇 医学技术(可授医学...
  • 23 篇 管理学
    • 21 篇 管理科学与工程(可...
  • 8 篇 农学
  • 1 篇 法学
  • 1 篇 教育学

主题

  • 252 篇 sparse autoencod...
  • 63 篇 deep learning
  • 24 篇 fault diagnosis
  • 18 篇 feature extracti...
  • 16 篇 deep neural netw...
  • 11 篇 machine learning
  • 9 篇 dimensionality r...
  • 7 篇 support vector m...
  • 7 篇 deep belief netw...
  • 7 篇 convolutional ne...
  • 6 篇 image classifica...
  • 6 篇 feature selectio...
  • 6 篇 convolutional ne...
  • 6 篇 unsupervised lea...
  • 5 篇 compressed sensi...
  • 5 篇 anomaly detectio...
  • 5 篇 face recognition
  • 5 篇 autoencoder
  • 5 篇 unsupervised fea...
  • 5 篇 convolutional au...

机构

  • 6 篇 xian univ techno...
  • 6 篇 tianshui normal ...
  • 3 篇 nanyang technol ...
  • 2 篇 nanjing normal u...
  • 2 篇 zhongnan univ ec...
  • 2 篇 northeast petr u...
  • 2 篇 chinese acad sci...
  • 2 篇 hong kong univ s...
  • 2 篇 northeastern uni...
  • 2 篇 china univ petr ...
  • 2 篇 northwestern pol...
  • 2 篇 hebei univ affil...
  • 2 篇 kasetsart univ g...
  • 2 篇 ming chuan univ ...
  • 2 篇 hubei key lab ad...
  • 2 篇 shenzhen institu...
  • 2 篇 china univ geosc...
  • 2 篇 zhengzhou univ l...
  • 2 篇 natl cent univ d...
  • 2 篇 natl inst techno...

作者

  • 7 篇 xie guo
  • 7 篇 yang jing
  • 7 篇 yang yanxi
  • 3 篇 hu jun
  • 3 篇 nair madhu s.
  • 3 篇 zhang yu-dong
  • 3 篇 wang tianzhen
  • 3 篇 xin bin
  • 3 篇 wang shui-hua
  • 2 篇 zhu zhongkui
  • 2 篇 chen kunjin
  • 2 篇 li xin
  • 2 篇 wu min
  • 2 篇 shen changqing
  • 2 篇 kim ji-seon
  • 2 篇 liu ming
  • 2 篇 liu hongyi
  • 2 篇 lin feng
  • 2 篇 hou xiao-xia
  • 2 篇 hou zengguang

语言

  • 242 篇 英文
  • 5 篇 中文
  • 4 篇 其他
  • 1 篇 法文
检索条件"主题词=sparse AutoEncoder"
252 条 记 录,以下是181-190 订阅
排序:
Fault Detection based on Deep Learning for Digital VLSI Circuits
收藏 引用
Procedia Computer Science 2021年 194卷 122-131页
作者: Lamya Gaber Aziza I. Hussein Mohammed Moness Computers and Systems Eng. Dept. Minia University Minia 61111 Egypt Electrical and Computer Eng. Dept. Effat University Jeddah 22332 Saudi Arabia
As growing complexity of digital VLSI circuits, fault detection and correction processes have been the most crucial phases during IC design. Many CAD tools and formal approaches have been used for debugging and locali... 详细信息
来源: 评论
Multi-lead model-based ECG signal denoising by guided filter
收藏 引用
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2019年 79卷 34-44页
作者: Hao, Huaqing Liu, Ming Xiong, Peng Du, Haiman Zhang, Hong Lin, Feng Hou, Zengguang Liu, Xiuling Hebei Univ Key Lab Digital Med Engn Hebei Prov Coll Elect & Informat Engn Baoding Peoples R China Hebei Univ Affiliated Hosp Baoding Peoples R China Nanyang Technol Univ Sch Comp Sci & Engn Singapore Singapore Chinese Acad Sci Inst Automat Beijing Peoples R China
The electrocardiogram (ECG) denoising is of paramount importance for accurate disease diagnosis, but individual differences bring great difficulties for ECG denoising, especially for Dynamic Electrocardiography (DCG).... 详细信息
来源: 评论
Deep model integrated with data correlation analysis for multiple intermittent faults diagnosis
收藏 引用
ISA TRANSACTIONS 2019年 95卷 306-319页
作者: Yang, Jing Xie, Guo Yang, Yanxi Zhang, Youmin Liu, Wei Xian Univ Technol Sch Automat & Informat Engn Jinhua South Rd Xian Shaanxi Peoples R China Concordia Univ 1455 de Maisonneuve Blvd W Montreal PQ H3G 1M8 Canada Tianshui Normal Univ Sch Mechatron & Automot Engn Xihe South Rd Tianshui Peoples R China
Currently, single fault diagnosis has received mass concern, and the related research achievements are remarkable. However, because of the mutual interaction of subsystems and the coupling of faults characteristics, t... 详细信息
来源: 评论
An improved deep network for intelligent diagnosis of machinery faults with similar features
收藏 引用
IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING 2019年 第12期14卷 1851-1864页
作者: Yang, Jing Xie, Guo Yang, Yanxi Li, Xin Mu, Lingxia Takahashi, Sei Mochizuki, Hiroshi Xian Univ Technol Sch Automat & Informat Engn Xian 710048 Shaanxi Peoples R China Tianshui Normal Univ Sch Mechatron & Automot Engn Tianshui 741000 Peoples R China Nihon Univ Coll Sci & Technol Dept Comp Engn Funabashi Chiba 2748501 Japan
Currently, fault diagnosis, especially single fault diagnosis, has yielded fruitful research results. However, for concurrent faults, which exist more widely in real industrial systems. Due to the challenges of comple... 详细信息
来源: 评论
An Improved Approach to Audio Segmentation and Classification in Broadcasting Industries
收藏 引用
JOURNAL OF DATABASE MANAGEMENT 2019年 第2期30卷 44-66页
作者: Sun, Jingzhou Wang, Yongbin Commun China Sch Comp Sci & Cybersecur Beijing Peoples R China
Audio segmentation and classification are the basis of audio processing in broadcasting industries. A Dual-CNN (Dual-Convolutional Neural Network) method is proposed in this article in which it is possible to pre-trai... 详细信息
来源: 评论
Identification of Partial Discharge Defects Based on Deep Learning Method
收藏 引用
IEEE TRANSACTIONS ON POWER DELIVERY 2019年 第4期34卷 1557-1568页
作者: Duan, Lian Hu, Jun Zhao, Gen Chen, Kunjin He, Jinliang Wang, Shan X. Tsinghua Univ Dept Elect Engn Beijing 100084 Peoples R China Stanford Univ Ctr Magnet Nanotechnol Stanford CA 94305 USA
Since repetitive partial discharge (PD) leads to insulation breakdown, it is one of the most critical defects that affect operation life of electrical equipment. In this paper, four kinds of PDdefects are identifiedwi... 详细信息
来源: 评论
Gear pitting fault diagnosis using disentangled features from unsupervised deep learning
收藏 引用
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART O-JOURNAL OF RISK AND RELIABILITY 2019年 第5期233卷 719-730页
作者: Qu, Yongzhi Zhang, Yue He, Miao He, David Jiao, Chen Zhou, Zude Wuhan Univ Technol Sch Mech & Elect Engn Wuhan 430070 Hubei Peoples R China Univ Illinois Dept Mech & Ind Engn Chicago IL USA
Effective feature extraction is critical for machinery fault diagnosis and prognosis. The use of time-frequency features for machinery fault diagnosis has prevailed in the last decade. However, more attentions have be... 详细信息
来源: 评论
Network Anomaly Detection using Threshold-based sparse  20
Network Anomaly Detection using Threshold-based Sparse
收藏 引用
Proceedings of the 11th International Conference on Advances in Information Technology
作者: May Thet Tun Dim En Nyaung Myat Pwint Phyu University of Information Technology Yangon Myanmar
Nowadays, cyber-attacks have been dramatically increased due to the rapid development of Internet-based services. The current network anomaly detection solutions such as Firewall, Snort, honeypots are useful, but they... 详细信息
来源: 评论
Locally weighted embedding topic modeling by markov random walk structure approximation and sparse regularization
收藏 引用
NEUROCOMPUTING 2018年 285卷 35-50页
作者: Wei, Chao Luo, Senlin Pan, Limin Wu, Zhouting Zhang, Ji Safi, Qamas Gul Khan Beijing Inst Technol Sch Informat & Elect Beijing 100081 Peoples R China Univ Engn & Technol Dept Comp Sci Taxila 47050 Punjab Pakistan
Topic model is a practical method for learning interpretable models of text corpora and have become a key problem of document representation. Some recently proposed topic models incorporate the intrinsic geometrical i... 详细信息
来源: 评论
DISTRIBUTION PRESERVING NETWORK EMBEDDING  44
DISTRIBUTION PRESERVING NETWORK EMBEDDING
收藏 引用
44th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Qin, Anyong Shang, Zhaowei Zhang, Taiping Tang, Yuan Yan Chongqing Univ Chongqing Peoples R China Univ Macau Macau Peoples R China
The deep autoencoder network which is based on constraining non-negative weights, can learn a low dimensional part-based representation. On the other hand, the inherent structure of the each data cluster can be descri... 详细信息
来源: 评论