咨询与建议

限定检索结果

文献类型

  • 157 篇 期刊文献
  • 92 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 251 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 234 篇 工学
    • 123 篇 计算机科学与技术...
    • 86 篇 电气工程
    • 40 篇 控制科学与工程
    • 32 篇 信息与通信工程
    • 24 篇 机械工程
    • 18 篇 软件工程
    • 15 篇 生物医学工程(可授...
    • 14 篇 仪器科学与技术
    • 12 篇 石油与天然气工程
    • 8 篇 材料科学与工程(可...
    • 8 篇 动力工程及工程热...
    • 8 篇 电子科学与技术(可...
    • 8 篇 测绘科学与技术
    • 5 篇 土木工程
    • 4 篇 化学工程与技术
    • 2 篇 建筑学
    • 2 篇 纺织科学与工程
    • 2 篇 农业工程
  • 47 篇 理学
    • 19 篇 生物学
    • 11 篇 物理学
    • 9 篇 化学
    • 8 篇 地球物理学
    • 4 篇 数学
    • 3 篇 地理学
    • 3 篇 系统科学
    • 2 篇 统计学(可授理学、...
  • 30 篇 医学
    • 13 篇 基础医学(可授医学...
    • 13 篇 临床医学
    • 3 篇 医学技术(可授医学...
  • 23 篇 管理学
    • 21 篇 管理科学与工程(可...
  • 8 篇 农学
  • 1 篇 法学
  • 1 篇 教育学

主题

  • 251 篇 sparse autoencod...
  • 62 篇 deep learning
  • 24 篇 fault diagnosis
  • 17 篇 feature extracti...
  • 16 篇 deep neural netw...
  • 11 篇 machine learning
  • 8 篇 dimensionality r...
  • 7 篇 support vector m...
  • 7 篇 deep belief netw...
  • 7 篇 convolutional ne...
  • 6 篇 image classifica...
  • 6 篇 feature selectio...
  • 6 篇 unsupervised lea...
  • 5 篇 compressed sensi...
  • 5 篇 anomaly detectio...
  • 5 篇 face recognition
  • 5 篇 autoencoder
  • 5 篇 unsupervised fea...
  • 5 篇 convolutional au...
  • 5 篇 convolutional ne...

机构

  • 6 篇 xian univ techno...
  • 6 篇 tianshui normal ...
  • 3 篇 nanyang technol ...
  • 2 篇 nanjing normal u...
  • 2 篇 zhongnan univ ec...
  • 2 篇 northeast petr u...
  • 2 篇 chinese acad sci...
  • 2 篇 hong kong univ s...
  • 2 篇 northeastern uni...
  • 2 篇 china univ petr ...
  • 2 篇 northwestern pol...
  • 2 篇 hebei univ affil...
  • 2 篇 kasetsart univ g...
  • 2 篇 ming chuan univ ...
  • 2 篇 hubei key lab ad...
  • 2 篇 shenzhen institu...
  • 2 篇 china univ geosc...
  • 2 篇 zhengzhou univ l...
  • 2 篇 natl cent univ d...
  • 2 篇 natl inst techno...

作者

  • 7 篇 xie guo
  • 7 篇 yang jing
  • 7 篇 yang yanxi
  • 3 篇 hu jun
  • 3 篇 nair madhu s.
  • 3 篇 zhang yu-dong
  • 3 篇 wang tianzhen
  • 3 篇 xin bin
  • 3 篇 wang shui-hua
  • 2 篇 zhu zhongkui
  • 2 篇 chen kunjin
  • 2 篇 li xin
  • 2 篇 wu min
  • 2 篇 shen changqing
  • 2 篇 kim ji-seon
  • 2 篇 liu ming
  • 2 篇 liu hongyi
  • 2 篇 lin feng
  • 2 篇 hou xiao-xia
  • 2 篇 hou zengguang

语言

  • 241 篇 英文
  • 5 篇 中文
  • 4 篇 其他
  • 1 篇 法文
检索条件"主题词=sparse AutoEncoder"
251 条 记 录,以下是191-200 订阅
排序:
Compressive Sensing and autoencoder Based Compressed Data Aggregation for Green IoT Networks
Compressive Sensing and Autoencoder Based Compressed Data Ag...
收藏 引用
IEEE Global Communications Conference (IEEE GLOBECOM)
作者: Zhang, Mingqiang Zhang, Haixia Yuan, Dongfeng Zhang, Minggao Shandong Prov Key Lab Wireless Commun Technol Jinan 250100 Peoples R China Shandong Univ Sch Control Sci & Engn Jinan 250100 Peoples R China
In cellular Internet of Things networks, massive access and highly dynamic traffic of machine type communication devices may cause network congestion, heavy energy consumption or even service unavailability. To reduce... 详细信息
来源: 评论
Training Large Scale Deep Neural Networks on the Intel Xeon Phi Many-core Coprocessor  28
Training Large Scale Deep Neural Networks on the Intel Xeon ...
收藏 引用
28th IEEE International Parallel & Distributed Processing Symposium Workshops (IPDPSW)
作者: Jin, Lei Wang, Zhaokang Gu, Rong Yuan, Chunfeng Huang, Yihua Nanjing Univ Dept Comp Sci & Technol Natl Key Lab Novel Software Technol Nanjing 210023 Jiangsu Peoples R China
As a new area of machine learning research, the deep learning algorithm has attracted a lot of attention from the research community. It may bring human beings to a higher cognitive level of data. Its unsupervised pre... 详细信息
来源: 评论
Open-Circuit Fault Diagnosis of Z-Source Inverter via Deep Neural Network
Open-Circuit Fault Diagnosis of Z-Source Inverter via Deep N...
收藏 引用
Chinese Automation Congress (CAC)
作者: Song, Baoye Nie, Shiju Li, Xuewen Xu, Lin Shandong Univ Sci & Technol Coll Elect Engn & Automat Qingdao 266590 Shandong Peoples R China
In this paper, issues of open-circuit fault diagnosis are solved for Z-source-inverter via the deep-sparse-autoencoder, which is one type of the various deep neural networks. Firstly, the preliminary of Z-source-inver... 详细信息
来源: 评论
A Protocol-based Intrusion Detection System using Dual autoencoders  21
A Protocol-based Intrusion Detection System using Dual Autoe...
收藏 引用
21st IEEE International Conference on Software Quality, Reliability and Security (QRS)
作者: Huang, Yu-Lun Hung, Ching-Yu Hu, Hsiao-Te Natl Yang Ming Chiao Tung Univ Dept Elect & Comp Engn Hsinchu Taiwan Natl Yang Ming Chiao Tung Univ Inst Elect & Control Engn Hsinchu Taiwan
This paper proposes a dual autoencoder-based Intrusion Detection System (duAE-IDS) for the ever-changing network attacks. duAE-IDS is a protocol-based IDS, which divides traffic by its application-layer protocol. duAE... 详细信息
来源: 评论
An Effective Multi-classification Method for NHL Pathological Images
An Effective Multi-classification Method for NHL Pathologica...
收藏 引用
IEEE International Conference on Systems, Man, and Cybernetics (SMC)
作者: Jiang, Huiyan Li, Zhongkuan Li, Siqi Zhou, Fucai Northeastern Univ Software Coll Shenyang 110819 Liaoning Peoples R China Northeastern Univ Sino Dutch Biomed & Informat Engn Sch Shenyang 110819 Liaoning Peoples R China
Accurate classification on pathological images is a significant research focus such as for non-Hodgkin lymphomas (NHL). To this end, this paper proposes a hierarchical classification model based on the labels' sta... 详细信息
来源: 评论
SAR Automatic Target Recognition Based on a Visual Cortical System
SAR Automatic Target Recognition Based on a Visual Cortical ...
收藏 引用
6th International Congress on Image and Signal Processing (CISP)
作者: Ni, Jia Cheng Xu, Yue Lei Air Force Engn Univ Inst Aeronaut & Astronaut Engn Xian Peoples R China
Human Vision system is the most complex and accurate system. In order to extract better features about Synthetic Aperture Radar (SAR) targets, a SAR automatic target recognition (ATR) algorithm based on human visual c... 详细信息
来源: 评论
Deep Learning-Based Recognition of Underwater Target
Deep Learning-Based Recognition of Underwater Target
收藏 引用
IEEE International Conference on Digital Signal Processing (DSP)
作者: Cao, Xu Zhang, Xiaomin Yu, Yang Niu, Letian Northwestern Polytech Univ Sch Marine Sci & Technol Xian 710072 Peoples R China
Underwater target recognition remains a challenging task due to the complex and changeable environment. There have been a huge number of methods to deal with this problem. However, most of them fail to hierarchically ... 详细信息
来源: 评论
A Deep Learning and Softmax Regression Fault Diagnosis Method for Multi-Level Converter  11
A Deep Learning and Softmax Regression Fault Diagnosis Metho...
收藏 引用
IEEE 11th International Symposium on Diagnostics for Electrical Machines Power Electronics and Drives (SDEMPED)
作者: Xin, Bin Wang, Tianzhen Tang, Tianhao Shanghai Maritime Univ Shanghai Peoples R China
With the single-tube and double-tube fault of seven-level converter, this paper presents a new way to learn the faults feature based on the deep neural network of sparse autoencoder. sparse autoencoder is an unsupervi... 详细信息
来源: 评论
Receptive Field Resolution Analysis in Convolutional Feature Extraction
Receptive Field Resolution Analysis in Convolutional Feature...
收藏 引用
13th International Symposium on Communications and Information Technologies (ISCIT) - Communication and Information Technology for New Life Style Beyond the Cloud
作者: Phaisangittisagul, Ekachai Chongprachawat, Rapeepol Kasetsart Univ Fac Engn Dept Elect Engn Bangkok 10900 Thailand Kasetsart Univ Grad Sch Bangkok 10900 Thailand
Instead of introducing new learning algorithm for solving complex classification tasks, many research groups in machine learning have focused on creating a good feature representation. In addition, labeled data is oft... 详细信息
来源: 评论
Automatic Recognition of ISAR Images Based on Deep Learning
Automatic Recognition of ISAR Images Based on Deep Learning
收藏 引用
CIE International Conference on Radar (RADAR)
作者: He, Xingyu Tong, Ningning Hu, Xiaowei Air Force Engn Univ Air & Missile Def Coll Xian Peoples R China
The problem of target classification of non-cooperative airplane using inverse synthetic aperture radar (ISAR) images is studied. ISAR image's variation with the radar imaging view makes the classification difficu... 详细信息
来源: 评论