咨询与建议

限定检索结果

文献类型

  • 4 篇 期刊文献
  • 1 篇 会议

馆藏范围

  • 5 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 5 篇 工学
    • 3 篇 电气工程
    • 2 篇 控制科学与工程
    • 1 篇 机械工程
    • 1 篇 仪器科学与技术
    • 1 篇 计算机科学与技术...

主题

  • 5 篇 sparse bayesian ...
  • 2 篇 support vector m...
  • 1 篇 support vector m...
  • 1 篇 mixture gaussian...
  • 1 篇 kernelised bayes...
  • 1 篇 nonparametric ap...
  • 1 篇 probabilistic wi...
  • 1 篇 brain-computer i...
  • 1 篇 autonomous syste...
  • 1 篇 population-based...
  • 1 篇 relevance vector...
  • 1 篇 event-related po...
  • 1 篇 navigation
  • 1 篇 trajectory
  • 1 篇 bayes methods
  • 1 篇 heterogeneous tr...
  • 1 篇 collision avoida...
  • 1 篇 background initi...
  • 1 篇 dempster-shafer ...
  • 1 篇 electroencephalo...

机构

  • 1 篇 riken brain sci ...
  • 1 篇 shandong univ ke...
  • 1 篇 univ calif san d...
  • 1 篇 univ sheffield d...
  • 1 篇 east china univ ...
  • 1 篇 department of co...
  • 1 篇 polish acad sci ...

作者

  • 1 篇 yip michael
  • 1 篇 jin jing
  • 1 篇 han xueshan
  • 1 篇 zhang xudong
  • 1 篇 gardner p.
  • 1 篇 zhou guoxu
  • 1 篇 cichocki andrzej
  • 1 篇 shao jing
  • 1 篇 wang xingyu
  • 1 篇 duong thai
  • 1 篇 bull l. a.
  • 1 篇 dervilis n.
  • 1 篇 zhao qibin
  • 1 篇 lin you
  • 1 篇 atanasov nikolay
  • 1 篇 worden k.
  • 1 篇 zhang yu
  • 1 篇 yang ming
  • 1 篇 gao jun

语言

  • 4 篇 英文
  • 1 篇 中文
检索条件"主题词=sparse Bayesian classification"
5 条 记 录,以下是1-10 订阅
排序:
sparse bayesian classification of EEG for Brain-Computer Interface
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2016年 第11期27卷 2256-2267页
作者: Zhang, Yu Zhou, Guoxu Jin, Jing Zhao, Qibin Wang, Xingyu Cichocki, Andrzej East China Univ Sci & Technol Minist Educ Key Lab Adv Control & Optimizat Chem Proc Shanghai 200237 Peoples R China RIKEN Brain Sci Inst Lab Adv Brain Signal Proc Saitama 3510198 Japan Polish Acad Sci Syst Res Inst PL-00901 Warsaw Poland
Regularization has been one of the most popular approaches to prevent overfitting in electroencephalogram (EEG) classification of brain-computer interfaces (BCIs). The effectiveness of regularization is often highly d... 详细信息
来源: 评论
Probabilistic Wind Generation Forecast Based on sparse bayesian classification and Dempster-Shafer Theory  51
Probabilistic Wind Generation Forecast Based on Sparse Bayes...
收藏 引用
51st Annual Meeting of the IEEE-Industry-Applications-Society (IAS)
作者: Yang, Ming Lin, You Han, Xueshan Shandong Univ Key Lab Power Syst Intelligent Dispatch & Control Jinan 250100 Peoples R China
Probabilistic wind generation forecast results are crucial for power system operational dispatch. In this paper, a nonparametric approach for short-term probabilistic wind generation forecast based on the sparse Bayes... 详细信息
来源: 评论
Autonomous Navigation in Unknown Environments With sparse bayesian Kernel-Based Occupancy Mapping
收藏 引用
IEEE TRANSACTIONS ON ROBOTICS 2022年 第6期38卷 3694-3712页
作者: Duong, Thai Yip, Michael Atanasov, Nikolay Univ Calif San Diego Dept Elect & Comp Engn La Jolla CA 92093 USA
This article focuses on online occupancy mapping and real-time collision checking onboard an autonomous robot navigating in a large unknown environment. Commonly used voxel and octree map representations can be easily... 详细信息
来源: 评论
On the application of kernelised bayesian transfer learning to population-based structural health monitoring
收藏 引用
MECHANICAL SYSTEMS AND SIGNAL PROCESSING 2022年 第PartB期167卷 108519-108519页
作者: Gardner, P. Bull, L. A. Dervilis, N. Worden, K. Univ Sheffield Dept Mech Engn Dynam Res Grp Sheffield S1 3JD S Yorkshire England
Data-driven approaches to Structural Health Monitoring (SHM) generally suffer from a lack of available health-state data. In particular, for most structures, it is not possible to obtain a comprehensive set of labelle... 详细信息
来源: 评论
Visual background initialization method based on sparse bayesian
收藏 引用
Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument 2007年 第SUPPL. 3期28卷 101-104页
作者: Zhang, Xudong Shao, Jing Gao, Jun Department of Computer and Information Hefei University of Technology Hefei 230009 China
The background subtraction is a common method for real-time segmentation of moving targets in image sequences. This method needs a true image without moving objects. However, a background free of moving objects is not... 详细信息
来源: 评论