咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程
    • 1 篇 计算机科学与技术...

主题

  • 1 篇 graphs
  • 1 篇 massively parall...
  • 1 篇 hardware acceler...
  • 1 篇 sparse and unstr...
  • 1 篇 sparse matrices
  • 1 篇 single instructi...
  • 1 篇 load modeling
  • 1 篇 vectors
  • 1 篇 graph neural net...
  • 1 篇 prefetching
  • 1 篇 social networkin...
  • 1 篇 multithreading
  • 1 篇 graphics process...
  • 1 篇 distributed and ...
  • 1 篇 training

机构

  • 1 篇 univ connecticut...

作者

  • 1 篇 khan omer

语言

  • 1 篇 英文
检索条件"主题词=sparse and unstructured matrix operators"
1 条 记 录,以下是1-10 订阅
排序:
A Data Prefetcher-Based 1000-Core RISC-V Processor for Efficient Processing of Graph Neural Networks
IEEE COMPUTER ARCHITECTURE LETTERS
收藏 引用
IEEE COMPUTER ARCHITECTURE LETTERS 2025年 第1期24卷 73-76页
作者: Khan, Omer Univ Connecticut Elect & Comp Engn Storrs CT 06269 USA
Graphs-based neural networks have seen tremendous adoption to perform complex predictive analytics on massive real-world graphs. The trend in hardware acceleration has identified significant challenges with harnessing... 详细信息
来源: 评论