咨询与建议

限定检索结果

文献类型

  • 157 篇 期刊文献
  • 92 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 251 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 234 篇 工学
    • 123 篇 计算机科学与技术...
    • 86 篇 电气工程
    • 40 篇 控制科学与工程
    • 32 篇 信息与通信工程
    • 24 篇 机械工程
    • 18 篇 软件工程
    • 15 篇 生物医学工程(可授...
    • 14 篇 仪器科学与技术
    • 12 篇 石油与天然气工程
    • 8 篇 材料科学与工程(可...
    • 8 篇 动力工程及工程热...
    • 8 篇 电子科学与技术(可...
    • 8 篇 测绘科学与技术
    • 5 篇 土木工程
    • 4 篇 化学工程与技术
    • 2 篇 建筑学
    • 2 篇 纺织科学与工程
    • 2 篇 农业工程
  • 47 篇 理学
    • 19 篇 生物学
    • 11 篇 物理学
    • 9 篇 化学
    • 8 篇 地球物理学
    • 4 篇 数学
    • 3 篇 地理学
    • 3 篇 系统科学
    • 2 篇 统计学(可授理学、...
  • 30 篇 医学
    • 13 篇 基础医学(可授医学...
    • 13 篇 临床医学
    • 3 篇 医学技术(可授医学...
  • 23 篇 管理学
    • 21 篇 管理科学与工程(可...
  • 8 篇 农学
  • 1 篇 法学
  • 1 篇 教育学

主题

  • 251 篇 sparse autoencod...
  • 62 篇 deep learning
  • 24 篇 fault diagnosis
  • 17 篇 feature extracti...
  • 16 篇 deep neural netw...
  • 11 篇 machine learning
  • 8 篇 dimensionality r...
  • 7 篇 support vector m...
  • 7 篇 deep belief netw...
  • 7 篇 convolutional ne...
  • 6 篇 image classifica...
  • 6 篇 feature selectio...
  • 6 篇 unsupervised lea...
  • 5 篇 compressed sensi...
  • 5 篇 anomaly detectio...
  • 5 篇 face recognition
  • 5 篇 autoencoder
  • 5 篇 unsupervised fea...
  • 5 篇 convolutional au...
  • 5 篇 convolutional ne...

机构

  • 6 篇 xian univ techno...
  • 6 篇 tianshui normal ...
  • 3 篇 nanyang technol ...
  • 2 篇 nanjing normal u...
  • 2 篇 zhongnan univ ec...
  • 2 篇 northeast petr u...
  • 2 篇 chinese acad sci...
  • 2 篇 hong kong univ s...
  • 2 篇 northeastern uni...
  • 2 篇 china univ petr ...
  • 2 篇 northwestern pol...
  • 2 篇 hebei univ affil...
  • 2 篇 kasetsart univ g...
  • 2 篇 ming chuan univ ...
  • 2 篇 hubei key lab ad...
  • 2 篇 shenzhen institu...
  • 2 篇 china univ geosc...
  • 2 篇 zhengzhou univ l...
  • 2 篇 natl cent univ d...
  • 2 篇 natl inst techno...

作者

  • 7 篇 xie guo
  • 7 篇 yang jing
  • 7 篇 yang yanxi
  • 3 篇 hu jun
  • 3 篇 nair madhu s.
  • 3 篇 zhang yu-dong
  • 3 篇 wang tianzhen
  • 3 篇 xin bin
  • 3 篇 wang shui-hua
  • 2 篇 zhu zhongkui
  • 2 篇 chen kunjin
  • 2 篇 li xin
  • 2 篇 wu min
  • 2 篇 shen changqing
  • 2 篇 kim ji-seon
  • 2 篇 liu ming
  • 2 篇 liu hongyi
  • 2 篇 lin feng
  • 2 篇 hou xiao-xia
  • 2 篇 hou zengguang

语言

  • 241 篇 英文
  • 5 篇 中文
  • 4 篇 其他
  • 1 篇 法文
检索条件"主题词=sparse autoencoder"
251 条 记 录,以下是21-30 订阅
排序:
Open-circuit fault diagnosis of power rectifier using sparse autoencoder based deep neural network
收藏 引用
NEUROCOMPUTING 2018年 311卷 1-10页
作者: Xu, Lin Cao, Maoyong Song, Baoye Zhang, Jiansheng Liu, Yurong Alsaadi, Fuad E. Shandong Univ Sci & Technol Coll Elect Engn & Automat Qingdao 266590 Peoples R China Yangzhou Univ Dept Math Yangzhou 225002 Jiangsu Peoples R China King Abdulaziz Univ Dept Elect & Comp Engn Fac Engn Jeddah 21589 Saudi Arabia
This paper is concerned with the open-circuit fault diagnosis of phase-controlled three-phase full-bridge rectifier by using a sparse autoencoder-based deep neural network (SAE-based DNN). Firstly, some preliminaries ... 详细信息
来源: 评论
Prediction model of sparse autoencoder-based bidirectional LSTM for wastewater flow rate
收藏 引用
JOURNAL OF SUPERCOMPUTING 2023年 第4期79卷 4412-4435页
作者: Huang, Jianying Yang, Seunghyeok Li, Jinhui Oh, Jeill Kang, Hoon Chung Ang Univ Sch Elect & Elect Engn 84 Heukseok Ro Seoul 06974 South Korea Chung Ang Univ Dept Civil & Environm Engn 84 Heukseok Ro Seoul 06974 South Korea
Sanitary sewer overflows caused by excessive rainfall derived infiltration and inflow is the major challenge currently faced by municipal administrations, and therefore, the ability to correctly predict the wastewater... 详细信息
来源: 评论
Room Response Equalization of Non-Minimum Phase Systems Using Kautz Filter and sparse autoencoder: A Hybrid Approach
收藏 引用
IETE JOURNAL OF RESEARCH 2023年 第12期69卷 9251-9265页
作者: Chaudhuri, Sayanti Dey, Debangshu Munshi, Sugata Jadavpur Univ Dept Elect Engn Kolkata WB India
Room Response Equalization (RRE) systems play a vital role in enhancing the hearing experience in different real-time application areas such as cinema theatres, home theatres, hearing aid implementation, car hi-fi sys... 详细信息
来源: 评论
Deep Learning Approach Combining sparse autoencoder With SVM for Network Intrusion Detection
收藏 引用
IEEE ACCESS 2018年 6卷 52843-52856页
作者: Al-Qatf, Majjed Yu Lasheng Al-Habib, Mohammed Al-Sabahi, Kamal Cent South Univ Sch Informat Sci & Engn Changsha 410083 Hunan Peoples R China
Network intrusion detection systems (NIDSs) provide a better solution to network security than other traditional network defense technologies, such as firewall systems. The success of NIDS is highly dependent on the p... 详细信息
来源: 评论
Prediction of aptamer-protein interacting pairs based on sparse autoencoder feature extraction and an ensemble classifier
收藏 引用
MATHEMATICAL BIOSCIENCES 2019年 311卷 103-108页
作者: Yang Qing Jia Cangzhi Li Taoying Dalian Maritime Univ Inst Environm Syst Biol Coll Environm & Engn 1 Linghai Rd Dalian 116026 Peoples R China Dalian Maritime Univ Sch Sci 1 Linghai Rd Dalian 116026 Peoples R China Dalian Maritime Univ Dept Maritime Econ & Management 1 Linghai Rd Dalian 116026 Peoples R China
Aptamer-protein interacting pairs play important roles in physiological functions and structural characterization. Identifying aptamer-protein interacting pairs is challenging and limited, despite of the tremendous ap... 详细信息
来源: 评论
Early Warning of Loss and Kick for Drilling Process Based on sparse autoencoder With Multivariate Time Series
收藏 引用
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 2023年 第11期19卷 11019-11029页
作者: Zhang, Zheng Lai, Xuzhi Du, Sheng Yu, Wanke Wu, Min China Univ Geosci Sch Automat Wuhan 430074 Peoples R China Hubei Key Lab Adv Control & Intelligent Automat C Wuhan 430074 Peoples R China Minist Educ Engn Res Ctr Intelligent Technol Geoexplorat Wuhan 430074 Peoples R China
Complicated geological environments lead to a high risk of drilling incidents. Early warning of loss and kick for the drilling process is essential to ensure process safety. On account of the nonlinear and temporal co... 详细信息
来源: 评论
Unifying attentive sparse autoencoder with neural collaborative filtering for recommendation
收藏 引用
INTELLIGENT DATA ANALYSIS 2022年 第4期26卷 841-857页
作者: Zhang, Yihao Zhao, Chu Yuan, Meng Chen, Mian Liu, Xiaoyang Chongqing Univ Technol Sch Artificial Intelligence Chongqing Peoples R China Chongqing Univ Technol Sch Comp & Engn Chongqing Peoples R China
The autoencoder network has been proven to be one of the powerful techniques for recommender systems. Currently, the ways of utilizing autoencoder in recommender systems can be divided into two categories: modeling us... 详细信息
来源: 评论
Automated Detection and Localization of Myocardial Infarction With staked sparse autoencoder and TreeBagger
收藏 引用
IEEE ACCESS 2019年 7卷 70634-70642页
作者: Zhang, Jieshuo Lin, Feng Xiong, Peng Du, Haiman Zhang, Hong Liu, Ming Hou, Zengguang Liu, Xiuling Hebei Univ Coll Elect & Informat Engn Key Lab Digital Med Engn Hebei Prov Baoding 071000 Peoples R China Nanyang Technol Univ Sch Comp Sci & Engn Singapore 639798 Singapore Hebei Univ Affiliated Hosp Baoding 071000 Peoples R China Chinese Acad Sci Inst Automat Beijing 100190 Peoples R China
Novel techniques in deep learning networks are proposed for the staked sparse autoencoder (SAE) and the bagged decision tree (TreeBagger), achieving significant improvement in detection and localization of myocardial ... 详细信息
来源: 评论
Clutter Removal in Through-the-Wall Radar Imaging Using sparse autoencoder With Low-Rank Projection
收藏 引用
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 2021年 第2期59卷 1118-1129页
作者: Tivive, Fok Hing Chi Bouzerdoum, Abdesselam Univ Wollongong Sch Elect Comp & Telecommun Engn Wollongong NSW 2522 Australia Hamad Bin Khalifa Univ Div Informat & Comput Technol Coll Sci & Engn Doha Qatar
Through-the-wall radar imaging is a sensing technology that can be used by first responders to see through obscure barriers during search-and-rescue missions or deployed by law enforcement and military personnel to ma... 详细信息
来源: 评论
Fault diagnosis of air-conditioning refrigeration system based on sparse autoencoder
收藏 引用
INTERNATIONAL JOURNAL OF LOW-CARBON TECHNOLOGIES 2019年 第4期14卷 487-492页
作者: Wang, Zhiyi Zhong, Jiachen Li, Jingfan Xia, Cui Zhejiang Sci Tech Univ Sch Civil Engn & Architecture Hangzhou 310018 Peoples R China
To overcome the drawbacks of using supervised learning to extract fault features for classification and low nonlinearity of the features inmost of current fault diagnosis of air-conditioning refrigeration system, spar... 详细信息
来源: 评论