咨询与建议

限定检索结果

文献类型

  • 157 篇 期刊文献
  • 92 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 251 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 234 篇 工学
    • 123 篇 计算机科学与技术...
    • 86 篇 电气工程
    • 40 篇 控制科学与工程
    • 32 篇 信息与通信工程
    • 24 篇 机械工程
    • 18 篇 软件工程
    • 15 篇 生物医学工程(可授...
    • 14 篇 仪器科学与技术
    • 12 篇 石油与天然气工程
    • 8 篇 材料科学与工程(可...
    • 8 篇 动力工程及工程热...
    • 8 篇 电子科学与技术(可...
    • 8 篇 测绘科学与技术
    • 5 篇 土木工程
    • 4 篇 化学工程与技术
    • 2 篇 建筑学
    • 2 篇 纺织科学与工程
    • 2 篇 农业工程
  • 47 篇 理学
    • 19 篇 生物学
    • 11 篇 物理学
    • 9 篇 化学
    • 8 篇 地球物理学
    • 4 篇 数学
    • 3 篇 地理学
    • 3 篇 系统科学
    • 2 篇 统计学(可授理学、...
  • 30 篇 医学
    • 13 篇 基础医学(可授医学...
    • 13 篇 临床医学
    • 3 篇 医学技术(可授医学...
  • 23 篇 管理学
    • 21 篇 管理科学与工程(可...
  • 8 篇 农学
  • 1 篇 法学
  • 1 篇 教育学

主题

  • 251 篇 sparse autoencod...
  • 62 篇 deep learning
  • 24 篇 fault diagnosis
  • 17 篇 feature extracti...
  • 16 篇 deep neural netw...
  • 11 篇 machine learning
  • 8 篇 dimensionality r...
  • 7 篇 support vector m...
  • 7 篇 deep belief netw...
  • 7 篇 convolutional ne...
  • 6 篇 image classifica...
  • 6 篇 feature selectio...
  • 6 篇 unsupervised lea...
  • 5 篇 compressed sensi...
  • 5 篇 anomaly detectio...
  • 5 篇 face recognition
  • 5 篇 autoencoder
  • 5 篇 unsupervised fea...
  • 5 篇 convolutional au...
  • 5 篇 convolutional ne...

机构

  • 6 篇 xian univ techno...
  • 6 篇 tianshui normal ...
  • 3 篇 nanyang technol ...
  • 2 篇 nanjing normal u...
  • 2 篇 zhongnan univ ec...
  • 2 篇 northeast petr u...
  • 2 篇 chinese acad sci...
  • 2 篇 hong kong univ s...
  • 2 篇 northeastern uni...
  • 2 篇 china univ petr ...
  • 2 篇 northwestern pol...
  • 2 篇 hebei univ affil...
  • 2 篇 kasetsart univ g...
  • 2 篇 ming chuan univ ...
  • 2 篇 hubei key lab ad...
  • 2 篇 shenzhen institu...
  • 2 篇 china univ geosc...
  • 2 篇 zhengzhou univ l...
  • 2 篇 natl cent univ d...
  • 2 篇 natl inst techno...

作者

  • 7 篇 xie guo
  • 7 篇 yang jing
  • 7 篇 yang yanxi
  • 3 篇 hu jun
  • 3 篇 nair madhu s.
  • 3 篇 zhang yu-dong
  • 3 篇 wang tianzhen
  • 3 篇 xin bin
  • 3 篇 wang shui-hua
  • 2 篇 zhu zhongkui
  • 2 篇 chen kunjin
  • 2 篇 li xin
  • 2 篇 wu min
  • 2 篇 shen changqing
  • 2 篇 kim ji-seon
  • 2 篇 liu ming
  • 2 篇 liu hongyi
  • 2 篇 lin feng
  • 2 篇 hou xiao-xia
  • 2 篇 hou zengguang

语言

  • 241 篇 英文
  • 5 篇 中文
  • 4 篇 其他
  • 1 篇 法文
检索条件"主题词=sparse autoencoder"
251 条 记 录,以下是51-60 订阅
排序:
Spatial-temporal Data Compression of Dynamic Vision Sensor Output with High Pixel-level Saliency using Low-precision sparse autoencoder  56
Spatial-temporal Data Compression of Dynamic Vision Sensor O...
收藏 引用
56th Asilomar Conference on Signals, Systems, and Computers
作者: Hasssan, Ahmed Meng, Jian Cao, Yu Seo, Jae-sun Arizona State Univ Sch Elect Comp & Energy Engn Tempe AZ 85281 USA
Imaging innovations such as dynamic vision sensor (DVS) can significantly reduce the image data volume by tracking only the changes in events. However, when DVS camera itself moves around (e.g. self-driving cars), the... 详细信息
来源: 评论
Transformer Fault Diagnosis based on Deep Brief sparse autoencoder  38
Transformer Fault Diagnosis based on Deep Brief Sparse Autoe...
收藏 引用
38th Chinese Control Conference (CCC)
作者: Xu, Zhong Mo, Wenxiong Wang, Yong Luo, Simin Liu, Tian Guangzhou Power Supply Bur Co Ltd Elect Power Test & Res Inst Guangzhou 510000 Peoples R China
Dissolved gas analysis (DGA) is an effective way to diagnose the internal faults of transformer. This paper proposes a deep belief sparse autoencoder (DBSAE), which can be performed on DGA data to detect the transform... 详细信息
来源: 评论
A sparse autoencoder compressed sensing method for acquiring the pressure array information of clothing
收藏 引用
Neurocomputing 2018年 275卷 1500-1510页
作者: Han, Tao Hao, Kuangrong Ding, Yongsheng Tang, Xuesong Engineering Research Center of Digitized Textile & Apparel Technology Ministry of Education Donghua University Shanghai 201620 China College of Information Sciences and Technology Donghua University 2999 Renmin North Road Songjiang District Shanghai 201620 China
In this paper, we integrate some ideas of sparse autoencoder of deep learning into compressed sensing (CS) theory, and set up a sparse autoencoder compressed sensing (SAECS) model, which can improve the compressed sam... 详细信息
来源: 评论
Image edge detection based on sparse autoencoder network  10
Image edge detection based on Sparse Autoencoder network
收藏 引用
10th International Conference on Information Optics and Photonics
作者: Liu, Yingwei Gao, Xiaorong Li, Jinlong Southwest Jiaotong Univ Sch Phys Sci & Technol 111 Sect 1 North Ring Rd Chengdu Sichuan Peoples R China
Edge detection plays an important role in image pattern recognition. Because of the shortcomings of poor anti-noise and spurious edges by using traditional edge detection methods. A method of image edge detection base... 详细信息
来源: 评论
PREPROCESSING-FREE SURFACE MATERIAL CLASSIFICATION USING CONVOLUTIONAL NEURAL NETWORKS PRETRAINED BY sparse autoencoder  25
PREPROCESSING-FREE SURFACE MATERIAL CLASSIFICATION USING CON...
收藏 引用
IEEE International Workshop on Machine Learning for Signal Processing
作者: Ji, M. Q. Fang, Lu Zheng, Haitian Strese, Matti Steinbach, Eckehard Hong Kong Univ Sci & Technol Hong Kong Hong Kong Peoples R China Univ Sci & Technol China Hefei Anhui Peoples R China Tech Univ Munich D-80290 Munich Germany
Acceleration signals captured during the interaction of a rigid tool with an object surface carry relevant information for surface material classification. Existing methods mostly rely on carefully designed perception... 详细信息
来源: 评论
Anomaly Detection in Network Traffic Using Dynamic Graph Mining with a sparse autoencoder  18
Anomaly Detection in Network Traffic Using Dynamic Graph Min...
收藏 引用
18th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (IEEE TrustCom) / 13th IEEE International Conference on Big Data Science and Engineering (IEEE BigDataSE)
作者: Jia, Guanbo Miller, Paul Hong, Xin Kalutarage, Harsha Ban, Tao Queens Univ Belfast Ctr Secur Informat Technol Belfast Antrim North Ireland Robert Gordon Univ Sch Comp Sci & Digital Media Aberdeen Scotland Natl Inst Informat & Commun Technol Informat Secur Res Ctr Koganei Tokyo Japan
Network based attacks on ecommerce websites can have serious economic consequences. Hence, anomaly detection in dynamic network traffic has become an increasingly important research topic in recent years. This paper p... 详细信息
来源: 评论
Blade Imbalanced Fault Diagnosis for Marine Current Turbine based on sparse autoencoder and Softmax Regression  33
Blade Imbalanced Fault Diagnosis for Marine Current Turbine ...
收藏 引用
33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC)
作者: Wen, Pingping Wang, Tianzhen Xin, Bin Tang, Tianhao Wang, Yide Shanghai Maritime Univ Dept Elect Automat Shanghai Peoples R China Nantes Univ Inst Elect & Elect Engn Nantes France
Because of the abundance of seston under the sea, the attachment on the blade of the marine current turbine (MCT) would cause imbalanced fault. In order to detect the imbalanced fault as soon as possible, an imbalance... 详细信息
来源: 评论
Pseudoinverse Learning Algorithom for Fast sparse autoencoder Training
Pseudoinverse Learning Algorithom for Fast Sparse Autoencode...
收藏 引用
IEEE Congress on Evolutionary Computation (IEEE CEC) as part of the IEEE World Congress on Computational Intelligence (IEEE WCCI)
作者: Xu, Bingxin Guo, Ping Beijing Union Univ Beijing Key Lab Informat Serv Engn Beijing 100101 Peoples R China Beijing Normal Univ Sch Syst Sci Image Proc & Pattern Recognit Lab Beijing 100875 Peoples R China
sparse autoencoder is one approach to automatically learn features from unlabeled data and received significant attention during the development of deep neural networks. However, the learning algorithm of sparse autoe... 详细信息
来源: 评论
Extracting Activity Patterns from Altering Biological Networks: a sparse autoencoder Approach  32
Extracting Activity Patterns from Altering Biological Networ...
收藏 引用
32nd IEEE International Symposium on Computer-Based Medical Systems (IEEE CBMS)
作者: Szlobodnyik, Gergely Pazmany Peter Catholic Univ Dept Informat Technol & Bion Budapest Hungary
In this paper we address the problem of extracting activity patterns from biological networks that cannot be characterized in the form of a static graph, such as gene regulatory networks wherein the co-expression patt... 详细信息
来源: 评论
Face recognition based on deep aggregated sparse autoencoder network  37
Face recognition based on deep aggregated sparse autoencoder...
收藏 引用
37th Chinese Control Conference (CCC)
作者: Zou, Guofeng Lin, Dingyi Fu, Gui-xia Shen, Jin Gao, Mingliang Shandong Univ Technol Coll Elect & Elect Engn Zibo 255049 Peoples R China
sparse autoencoder network is sensitive to face noise, and the learning process is easy to ignore the face structure information. Address this problem, we propose a face recognition approach fused sub-region LBP featu... 详细信息
来源: 评论