咨询与建议

限定检索结果

文献类型

  • 158 篇 期刊文献
  • 92 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 252 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 235 篇 工学
    • 124 篇 计算机科学与技术...
    • 87 篇 电气工程
    • 40 篇 控制科学与工程
    • 33 篇 信息与通信工程
    • 24 篇 机械工程
    • 18 篇 软件工程
    • 15 篇 生物医学工程(可授...
    • 14 篇 仪器科学与技术
    • 12 篇 石油与天然气工程
    • 8 篇 材料科学与工程(可...
    • 8 篇 动力工程及工程热...
    • 8 篇 电子科学与技术(可...
    • 8 篇 测绘科学与技术
    • 5 篇 土木工程
    • 4 篇 化学工程与技术
    • 2 篇 建筑学
    • 2 篇 纺织科学与工程
    • 2 篇 农业工程
  • 47 篇 理学
    • 19 篇 生物学
    • 11 篇 物理学
    • 9 篇 化学
    • 8 篇 地球物理学
    • 4 篇 数学
    • 3 篇 地理学
    • 3 篇 系统科学
    • 2 篇 统计学(可授理学、...
  • 30 篇 医学
    • 13 篇 基础医学(可授医学...
    • 13 篇 临床医学
    • 3 篇 医学技术(可授医学...
  • 23 篇 管理学
    • 21 篇 管理科学与工程(可...
  • 8 篇 农学
  • 1 篇 法学
  • 1 篇 教育学

主题

  • 252 篇 sparse autoencod...
  • 63 篇 deep learning
  • 24 篇 fault diagnosis
  • 18 篇 feature extracti...
  • 16 篇 deep neural netw...
  • 11 篇 machine learning
  • 9 篇 dimensionality r...
  • 7 篇 support vector m...
  • 7 篇 deep belief netw...
  • 7 篇 convolutional ne...
  • 6 篇 image classifica...
  • 6 篇 feature selectio...
  • 6 篇 convolutional ne...
  • 6 篇 unsupervised lea...
  • 5 篇 compressed sensi...
  • 5 篇 anomaly detectio...
  • 5 篇 face recognition
  • 5 篇 autoencoder
  • 5 篇 unsupervised fea...
  • 5 篇 convolutional au...

机构

  • 6 篇 xian univ techno...
  • 6 篇 tianshui normal ...
  • 3 篇 nanyang technol ...
  • 2 篇 nanjing normal u...
  • 2 篇 zhongnan univ ec...
  • 2 篇 northeast petr u...
  • 2 篇 chinese acad sci...
  • 2 篇 hong kong univ s...
  • 2 篇 northeastern uni...
  • 2 篇 china univ petr ...
  • 2 篇 northwestern pol...
  • 2 篇 hebei univ affil...
  • 2 篇 kasetsart univ g...
  • 2 篇 ming chuan univ ...
  • 2 篇 hubei key lab ad...
  • 2 篇 shenzhen institu...
  • 2 篇 china univ geosc...
  • 2 篇 zhengzhou univ l...
  • 2 篇 natl cent univ d...
  • 2 篇 natl inst techno...

作者

  • 7 篇 xie guo
  • 7 篇 yang jing
  • 7 篇 yang yanxi
  • 3 篇 hu jun
  • 3 篇 nair madhu s.
  • 3 篇 zhang yu-dong
  • 3 篇 wang tianzhen
  • 3 篇 xin bin
  • 3 篇 wang shui-hua
  • 2 篇 zhu zhongkui
  • 2 篇 chen kunjin
  • 2 篇 li xin
  • 2 篇 wu min
  • 2 篇 shen changqing
  • 2 篇 kim ji-seon
  • 2 篇 liu ming
  • 2 篇 liu hongyi
  • 2 篇 lin feng
  • 2 篇 hou xiao-xia
  • 2 篇 hou zengguang

语言

  • 242 篇 英文
  • 5 篇 中文
  • 4 篇 其他
  • 1 篇 法文
检索条件"主题词=sparse autoencoder"
252 条 记 录,以下是61-70 订阅
排序:
Transformer Fault Diagnosis based on Deep Brief sparse autoencoder  38
Transformer Fault Diagnosis based on Deep Brief Sparse Autoe...
收藏 引用
38th Chinese Control Conference (CCC)
作者: Xu, Zhong Mo, Wenxiong Wang, Yong Luo, Simin Liu, Tian Guangzhou Power Supply Bur Co Ltd Elect Power Test & Res Inst Guangzhou 510000 Peoples R China
Dissolved gas analysis (DGA) is an effective way to diagnose the internal faults of transformer. This paper proposes a deep belief sparse autoencoder (DBSAE), which can be performed on DGA data to detect the transform... 详细信息
来源: 评论
Anomaly Detection in Network Traffic Using Dynamic Graph Mining with a sparse autoencoder  18
Anomaly Detection in Network Traffic Using Dynamic Graph Min...
收藏 引用
18th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (IEEE TrustCom) / 13th IEEE International Conference on Big Data Science and Engineering (IEEE BigDataSE)
作者: Jia, Guanbo Miller, Paul Hong, Xin Kalutarage, Harsha Ban, Tao Queens Univ Belfast Ctr Secur Informat Technol Belfast Antrim North Ireland Robert Gordon Univ Sch Comp Sci & Digital Media Aberdeen Scotland Natl Inst Informat & Commun Technol Informat Secur Res Ctr Koganei Tokyo Japan
Network based attacks on ecommerce websites can have serious economic consequences. Hence, anomaly detection in dynamic network traffic has become an increasingly important research topic in recent years. This paper p... 详细信息
来源: 评论
Extracting Activity Patterns from Altering Biological Networks: a sparse autoencoder Approach  32
Extracting Activity Patterns from Altering Biological Networ...
收藏 引用
32nd IEEE International Symposium on Computer-Based Medical Systems (IEEE CBMS)
作者: Szlobodnyik, Gergely Pazmany Peter Catholic Univ Dept Informat Technol & Bion Budapest Hungary
In this paper we address the problem of extracting activity patterns from biological networks that cannot be characterized in the form of a static graph, such as gene regulatory networks wherein the co-expression patt... 详细信息
来源: 评论
Fault Diagnosis Based on Batch-normalized Stacked sparse autoencoder
Fault Diagnosis Based on Batch-normalized Stacked Sparse Aut...
收藏 引用
第三十九届中国控制会议
作者: Liu Xiaozhi Gao Yang Yang Yinghua College of Information Science and Engineering Northeastern University
A fault diagnosis method based on batch-normalization stacked sparse autoencoder(SSAE) is presented in this paper. This paper use the autoencoder to extract features for fault diagnosis on account of its good performa... 详细信息
来源: 评论
Improved sparse autoencoder based artificial neural network approach for prediction of heart disease
收藏 引用
Informatics in Medicine Unlocked 2020年 18卷
作者: Mienye, Ibomoiye Domor Sun, Yanxia Wang, Zenghui Department of Electrical and Electronic Engineering Science University of Johannesburg Johannesburg 2006 South Africa Department of Electrical and Mining Engineering University of South Africa Florida 1709 South Africa
In this paper a two stage method is proposed to effectively predict heart disease. The first stage involves training an improved sparse autoencoder (SAE), an unsupervised neural network, to learn the best representati... 详细信息
来源: 评论
A Framework for Automatically Extracting Overvoltage Features Based on sparse autoencoder
收藏 引用
IEEE TRANSACTIONS ON SMART GRID 2018年 第2期9卷 594-604页
作者: Chen, Kunjin Hu, Jun He, Jinliang Tsinghua Univ Dept Elect Engn State Key Lab Power Syst Beijing 100084 Peoples R China
With the development of smart grid, it is of increasing significance to identify and cope with various types of overvoltages, faults and power quality disturbances effectively and automatically. In this paper, a frame... 详细信息
来源: 评论
Supervised Learning via Unsupervised sparse autoencoder
收藏 引用
IEEE ACCESS 2018年 6卷 73802-73814页
作者: Liu, Jianran Li, Chan Yang, Wenyuan Minnan Normal Univ Fujian Key Lab Granular Comp & Applicat Zhangzhou 363000 Peoples R China Xiamen Univ Tan KahKee Coll Xiamen 363105 Peoples R China
Dimensionality reduction is commonly used to preprocess high-dimensional data, which is an essential step in machine learning and data mining. An outstanding low-dimensional feature can improve the efficiency of subse... 详细信息
来源: 评论
Seven-layer deep neural network based on sparse autoencoder for voxelwise detection of cerebral microbleed
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2018年 第9期77卷 10521-10538页
作者: Zhang, Yu-Dong Zhang, Yin Hou, Xiao-Xia Chen, Hong Wang, Shui-Hua Nanjing Normal Univ Sch Comp Sci & Technol Nanjing 210023 Jiangsu Peoples R China Hunan Prov Key Lab Network Invest Technol Changsha 410138 Hunan Peoples R China Nanjing Med Univ Dept Neurol Affiliated Hosp 1 Nanjing 210029 Jiangsu Peoples R China Zhongnan Univ Econ & Law Sch Informat & Safety Engn Wuhan 430073 Hubei Peoples R China CUNY City Coll Dept Elect Engn New York NY 10031 USA
In order to detect the cerebral microbleed (CMB) voxels within brain, we used susceptibility weighted imaging to scan the subjects. Then, we used undersampling to solve the accuracy paradox caused from the imbalanced ... 详细信息
来源: 评论
Post-fault prediction of transient instabilities using stacked sparse autoencoder
收藏 引用
ELECTRIC POWER SYSTEMS RESEARCH 2018年 164卷 243-252页
作者: Mahdi, Mohammed Genc, V. M. Istemihan Istanbul Tech Univ Dept Elect Engn TR-34469 Istanbul Turkey
Post-fault prediction of transient stability of power systems has a great impact on the performance of wide area monitoring, protection and control systems. Situational awareness capabilities of a power system are imp... 详细信息
来源: 评论
Open-circuit fault diagnosis of power rectifier using sparse autoencoder based deep neural network
收藏 引用
NEUROCOMPUTING 2018年 311卷 1-10页
作者: Xu, Lin Cao, Maoyong Song, Baoye Zhang, Jiansheng Liu, Yurong Alsaadi, Fuad E. Shandong Univ Sci & Technol Coll Elect Engn & Automat Qingdao 266590 Peoples R China Yangzhou Univ Dept Math Yangzhou 225002 Jiangsu Peoples R China King Abdulaziz Univ Dept Elect & Comp Engn Fac Engn Jeddah 21589 Saudi Arabia
This paper is concerned with the open-circuit fault diagnosis of phase-controlled three-phase full-bridge rectifier by using a sparse autoencoder-based deep neural network (SAE-based DNN). Firstly, some preliminaries ... 详细信息
来源: 评论