咨询与建议

限定检索结果

文献类型

  • 158 篇 期刊文献
  • 92 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 252 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 235 篇 工学
    • 122 篇 计算机科学与技术...
    • 87 篇 电气工程
    • 39 篇 控制科学与工程
    • 32 篇 信息与通信工程
    • 24 篇 机械工程
    • 17 篇 软件工程
    • 15 篇 生物医学工程(可授...
    • 14 篇 仪器科学与技术
    • 12 篇 石油与天然气工程
    • 8 篇 材料科学与工程(可...
    • 8 篇 电子科学与技术(可...
    • 8 篇 测绘科学与技术
    • 7 篇 动力工程及工程热...
    • 5 篇 土木工程
    • 4 篇 化学工程与技术
    • 2 篇 建筑学
    • 2 篇 纺织科学与工程
    • 2 篇 农业工程
  • 47 篇 理学
    • 19 篇 生物学
    • 11 篇 物理学
    • 9 篇 化学
    • 8 篇 地球物理学
    • 4 篇 数学
    • 3 篇 地理学
    • 3 篇 系统科学
    • 2 篇 统计学(可授理学、...
  • 29 篇 医学
    • 13 篇 基础医学(可授医学...
    • 13 篇 临床医学
    • 3 篇 医学技术(可授医学...
  • 23 篇 管理学
    • 21 篇 管理科学与工程(可...
  • 8 篇 农学
  • 1 篇 法学
  • 1 篇 教育学

主题

  • 252 篇 sparse autoencod...
  • 62 篇 deep learning
  • 24 篇 fault diagnosis
  • 18 篇 feature extracti...
  • 16 篇 deep neural netw...
  • 11 篇 machine learning
  • 8 篇 dimensionality r...
  • 7 篇 support vector m...
  • 7 篇 deep belief netw...
  • 7 篇 convolutional ne...
  • 6 篇 image classifica...
  • 6 篇 feature selectio...
  • 6 篇 unsupervised lea...
  • 5 篇 compressed sensi...
  • 5 篇 anomaly detectio...
  • 5 篇 face recognition
  • 5 篇 autoencoder
  • 5 篇 unsupervised fea...
  • 5 篇 convolutional au...
  • 5 篇 convolutional ne...

机构

  • 6 篇 xian univ techno...
  • 6 篇 tianshui normal ...
  • 3 篇 nanyang technol ...
  • 2 篇 nanjing normal u...
  • 2 篇 zhongnan univ ec...
  • 2 篇 northeast petr u...
  • 2 篇 chinese acad sci...
  • 2 篇 hong kong univ s...
  • 2 篇 northeastern uni...
  • 2 篇 china univ petr ...
  • 2 篇 northwestern pol...
  • 2 篇 hebei univ affil...
  • 2 篇 kasetsart univ g...
  • 2 篇 ming chuan univ ...
  • 2 篇 hubei key lab ad...
  • 2 篇 shenzhen institu...
  • 2 篇 china univ geosc...
  • 2 篇 zhengzhou univ l...
  • 2 篇 natl cent univ d...
  • 2 篇 natl inst techno...

作者

  • 7 篇 xie guo
  • 7 篇 yang jing
  • 7 篇 yang yanxi
  • 3 篇 hu jun
  • 3 篇 nair madhu s.
  • 3 篇 zhang yu-dong
  • 3 篇 wang tianzhen
  • 3 篇 xin bin
  • 3 篇 wang shui-hua
  • 2 篇 zhu zhongkui
  • 2 篇 chen kunjin
  • 2 篇 li xin
  • 2 篇 wu min
  • 2 篇 shen changqing
  • 2 篇 kim ji-seon
  • 2 篇 liu ming
  • 2 篇 liu hongyi
  • 2 篇 lin feng
  • 2 篇 hou xiao-xia
  • 2 篇 hou zengguang

语言

  • 242 篇 英文
  • 5 篇 中文
  • 4 篇 其他
  • 1 篇 法文
检索条件"主题词=sparse autoencoder"
252 条 记 录,以下是81-90 订阅
排序:
Fault detection and calibration for building energy system using Bayesian inference and sparse autoencoder: A case study in photovoltaic thermal heat pump system
收藏 引用
ENERGY AND BUILDINGS 2023年 290卷
作者: Wang, Peng Li, Congwei Liang, Ruobing Yoon, Sungmin Mu, Song Liu, Yuchuan Dalian Univ Technol Fac Infrastructure Engn Dalian Peoples R China Chongqing Univ Key Lab Low grade Energy Utilizat Technol & Syst Minist Educ China Chongqing Peoples R China Sungkyunkwan Univ Dept Global Smart City Suwon 16419 South Korea Sungkyunkwan Univ Sch Civil Architectural Eng & Landscape Architectu Suwon 16419 South Korea Guangdong Airport Baiyun Informat Technol Co Ltd Guangzhou 510000 Peoples R China Sino Ocean Grp Holding Ltd Beijing 100025 Peoples R China
The rise of clean energy such as solar energy provides a new idea to optimize the energy structure, and Photovoltaic thermal (PVT) heat pump system is one of the mainstream development at present. The wrong sensor dat... 详细信息
来源: 评论
A detection method of oil content for maize kernels based on CARS feature selection and deep sparse autoencoder feature extraction
收藏 引用
INDUSTRIAL CROPS AND PRODUCTS 2024年 222卷
作者: Yang, Dongfeng Hu, Jun Heilongjiang Bayi Agr Univ Coll Informat & Elect Engn Daqing 163319 Peoples R China Heilongjiang Bayi Agr Univ Coll Engn Daqing 163319 Peoples R China
To achieve accurate, rapid, and non-destructive oil content determination in maize, a neural fitting model that combines feature selection and feature extraction is proposed. Competitive adaptive re-weighted sampling ... 详细信息
来源: 评论
Enhancing performance of end-to-end communication system using Attention Mechanism-based sparse autoencoder over Rayleigh fading channel
收藏 引用
PHYSICAL COMMUNICATION 2024年 67卷
作者: Sindal, Safalata S. Trivedi, Y. N. Nirma Univ Inst Technol Dept Elect & Commun Engn Ahmadabad 382481 Gujarat India
Deep learning has revolutionized communication systems by introducing innovative approaches to address channel impairments through end-to-end models. autoencoders, a type of deep learning architecture, are adept at le... 详细信息
来源: 评论
A computer-aided diagnosis system for the classification of COVID-19 and non-COVID-19 pneumonia on chest X-ray images by integrating CNN with sparse autoencoder and feed forward neural network
收藏 引用
COMPUTERS IN BIOLOGY AND MEDICINE 2022年 141卷 105134-105134页
作者: Gayathri, J. L. Abraham, Bejoy Sujarani, M. S. Nair, Madhu S. Coll Engn Perumon Dept Comp Sci & Engn Kollam 691601 Kerala India Cochin Univ Sci & Technol Dept Comp Sci Artificial Intelligence & Comp Vis Lab Kochi 682022 Kerala India
Several infectious diseases have affected the lives of many people and have caused great dilemmas all over the world. COVID-19 was declared a pandemic caused by a newly discovered virus named Severe Acute Respiratory ... 详细信息
来源: 评论
Deep sparse autoencoder prediction model based on adversarial learning for cross-domain recommendations
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2021年 220卷
作者: Li, Yakun Ren, Jiadong Liu, Jiaomin Chang, Yixin Yanshan Univ Coll Informat Sci & Engn Qinhuangdao Hebei Peoples R China Key Lab Comp Virtual Technol & Syst Integrat Hebe Qinhuangdao Hebei Peoples R China
Online recommender systems generally suffer from severe data sparsity problems, and this are particularly prevalent in newly launched systems that do not have sufficient amounts of data. Cross-domain recommendations c... 详细信息
来源: 评论
Sequential sparse autoencoder for dynamic heading representation in ventral intraparietal area
收藏 引用
COMPUTERS IN BIOLOGY AND MEDICINE 2023年 163卷 107114-107114页
作者: Gao, Wei Shen, Jiangrong Lin, Yipeng Wang, Kejun Lin, Zheng Tang, Huajin Chen, Xiaodong Zhejiang Univ Affiliated Hosp 2 Interdisciplinary Inst Neurosci & Technol Dept Neurol & PsychiatColl Biomed Engn & Instrume 268 Kaixuan Rd Hangzhou 310029 Peoples R China Zhejiang Univ Coll Comp Sci & Technol 38 Zheda Rd Hangzhou 310027 Peoples R China Zhejiang Univ Sch Software Technol 38 Zheda Rd Hangzhou 310027 Peoples R China Zhejiang Univ Affiliated Hosp 2 Sch Med Dept Psychiat 88 Jiefang Rd Hangzhou 310009 Peoples R China
To navigate in space, it is important to predict headings in real-time from neural responses in the brain to vestibular and visual signals, and the ventral intraparietal area (VIP) is one of the critical brain areas. ... 详细信息
来源: 评论
A method for fault detection in multi-component systems based on sparse autoencoder-based deep neural networks
收藏 引用
RELIABILITY ENGINEERING & SYSTEM SAFETY 2022年 220卷
作者: Yang, Zhe Baraldi, Piero Zio, Enrico Politecn Milan Energy Dept Via La Masa 34 I-20156 Milan Italy PSL Res Univ CRC MINES ParisTech Sophia Antipolis France
In multi-component systems, degradation, maintenance, renewal and operational mode change continuously the operating conditions. The identification of the onset of abnormal conditions from signal measurements taken in... 详细信息
来源: 评论
Cable Incipient Fault Identification with a sparse autoencoder and a Deep Belief Network
收藏 引用
ENERGIES 2019年 第18期12卷
作者: Liu, Ning Fan, Bo Xiao, Xianyong Yang, Xiaomei Sichuan Univ Coll Elect Engn Chengdu 610065 Sichuan Peoples R China State Grid Ningxia Power Co Power Res Inst Yinchuan 750000 Peoples R China
Incipient faults in power cables are a serious threat to power safety and are difficult to accurately identify. The traditional pattern recognition method based on feature extraction and feature selection has strong s... 详细信息
来源: 评论
Learning Feature Representations with a Cost-Relevant sparse autoencoder
收藏 引用
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS 2015年 第1期25卷 1450034页
作者: Langkvist, Martin Loutfi, Amy Univ Orebro Sch Sci & Technol Appl Autonomous Sensor Syst SE-70182 Orebro Sweden
There is an increasing interest in the machine learning community to automatically learn feature representations directly from the (unlabeled) data instead of using hand-designed features. The autoencoder is one metho... 详细信息
来源: 评论
Application of deep canonically correlated sparse autoencoder for the classification of schizophrenia
收藏 引用
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020年 183卷 105073-105073页
作者: Li, Gang Han, Depeng Wang, Chao Hu, Wenxing Calhoun, Vince D. Wang, Yu-Ping Changan Univ Sch Elect & Control Engn Xian 710064 Shaanxi Peoples R China Changan Univ Key Lab Rd Construct Technol & Equipment MOE Xian Shaanxi Peoples R China Tulane Univ Biomed Engn Dept New Orleans LA 70118 USA Univ New Mexico Mind Res Network Albuquerque NM 87106 USA Univ New Mexico Dept ECE Albuquerque NM 87106 USA
Background and objective: Imaging genetics has been widely used to help diagnose and treat mental illness, e.g., schizophrenia, by combining magnetic resonance imaging of the brain and genomic information for comprehe... 详细信息
来源: 评论