咨询与建议

限定检索结果

文献类型

  • 1,060 篇 期刊文献
  • 1,025 篇 会议
  • 16 篇 学位论文

馆藏范围

  • 2,101 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,919 篇 工学
    • 1,156 篇 计算机科学与技术...
    • 920 篇 电气工程
    • 220 篇 软件工程
    • 212 篇 信息与通信工程
    • 157 篇 控制科学与工程
    • 131 篇 机械工程
    • 86 篇 仪器科学与技术
    • 85 篇 生物医学工程(可授...
    • 83 篇 电子科学与技术(可...
    • 71 篇 测绘科学与技术
    • 22 篇 材料科学与工程(可...
    • 18 篇 环境科学与工程(可...
    • 13 篇 光学工程
    • 10 篇 网络空间安全
    • 9 篇 土木工程
    • 7 篇 航空宇航科学与技...
  • 452 篇 理学
    • 216 篇 物理学
    • 92 篇 生物学
    • 53 篇 数学
    • 48 篇 地球物理学
    • 35 篇 系统科学
    • 11 篇 化学
    • 7 篇 统计学(可授理学、...
    • 6 篇 地理学
  • 412 篇 医学
    • 289 篇 临床医学
    • 123 篇 基础医学(可授医学...
    • 57 篇 特种医学
  • 85 篇 管理学
    • 82 篇 管理科学与工程(可...
  • 28 篇 农学
    • 7 篇 农业资源与环境
  • 12 篇 教育学
    • 10 篇 心理学(可授教育学...
  • 9 篇 文学
  • 5 篇 军事学
  • 3 篇 法学
  • 2 篇 哲学
  • 2 篇 经济学
  • 1 篇 艺术学

主题

  • 2,101 篇 sparse coding
  • 381 篇 dictionary learn...
  • 85 篇 sparse represent...
  • 83 篇 image classifica...
  • 70 篇 feature extracti...
  • 66 篇 dictionaries as ...
  • 54 篇 classification
  • 48 篇 images
  • 47 篇 machine learning
  • 43 篇 super-resolution
  • 43 篇 image denoising
  • 38 篇 face recognition
  • 38 篇 encoding
  • 37 篇 dictionaries
  • 36 篇 deep learning
  • 36 篇 denoising
  • 34 篇 compressed sensi...
  • 34 篇 image representa...
  • 31 篇 transfer learnin...
  • 31 篇 image coding

机构

  • 17 篇 nanjing univ sci...
  • 12 篇 northwestern pol...
  • 10 篇 zhejiang univ co...
  • 10 篇 univ georgia dep...
  • 10 篇 harbin inst tech...
  • 9 篇 los alamos natl ...
  • 9 篇 natl univ singap...
  • 9 篇 univ georgia bio...
  • 8 篇 chinese acad sci...
  • 8 篇 zhejiang univ co...
  • 8 篇 chinese acad sci...
  • 8 篇 univ michigan de...
  • 7 篇 sichuan univ col...
  • 7 篇 univ chinese aca...
  • 7 篇 georgia inst tec...
  • 7 篇 shanghai jiao to...
  • 6 篇 univ chinese aca...
  • 6 篇 suzhou vocat uni...
  • 6 篇 astar inst infoc...
  • 6 篇 univ minnesota d...

作者

  • 15 篇 li xiang
  • 14 篇 liu tianming
  • 11 篇 qian yuntao
  • 11 篇 elad michael
  • 10 篇 lv jinglei
  • 10 篇 yang jianchao
  • 10 篇 kenyon garrett t...
  • 10 篇 guo lei
  • 9 篇 zhang lei
  • 9 篇 han junwei
  • 9 篇 zhou jun
  • 8 篇 quan yuhui
  • 8 篇 ding shuxue
  • 8 篇 yang yi-hsuan
  • 8 篇 ye jieping
  • 8 篇 zhang jie
  • 8 篇 li xuelong
  • 8 篇 barth erhardt
  • 8 篇 sapiro guillermo
  • 8 篇 zhu xiaofeng

语言

  • 2,051 篇 英文
  • 38 篇 其他
  • 8 篇 中文
  • 2 篇 土耳其文
  • 1 篇 法文
  • 1 篇 俄文
检索条件"主题词=sparse coding"
2101 条 记 录,以下是1841-1850 订阅
排序:
Data Modeling Using Channel-Remapped Generalized Features
Data Modeling Using Channel-Remapped Generalized Features
收藏 引用
IEEE International Conference on Systems, Man, and Cybernetics
作者: Houtan Rahmanian Manfred Huber Dept. of Computer Science and Engineering University of Texas at Arlington Arlington TX USA
sparse coding is a very powerful method to learn high-level features from raw data input. It is able to learn an overcomplete basis that has the potential to capture robust and discriminative patterns within the data.... 详细信息
来源: 评论
EFFICIENT LARGE-SCALE SERVICE CLUSTERING VIA sparse FUNCTIONAL REPRESENTATION AND ACCELERATED OPTIMIZATION
收藏 引用
INTERNATIONAL JOURNAL OF COOPERATIVE INFORMATION SYSTEMS 2013年 第4期22卷 1341001-1341001页
作者: Yu, Qi Rochester Inst Technol Coll Comp & Informat Sci Rochester NY 14623 USA
Clustering techniques offer a systematic approach to organize the diverse and fast increasing Web services by assigning relevant services into homogeneous service communities. However, the ever increasing number of We... 详细信息
来源: 评论
Learning Convolutional Neural Networks From Few Samples
Learning Convolutional Neural Networks From Few Samples
收藏 引用
International Joint Conference on Neural Networks
作者: Raimar Wagner Markus Thom Roland Schweiger Günther Palm Albrecht Rothermel driveU / Institute of Microelectronics University of Ulm Ulm Germany driveU / Institute of Measurement Control and Microtechnology University of Ulm Ulm Germany Daimler AG Ulm Germany Institute of Neural Information Processing University of Ulm Ulm Germany
Learning Convolutional Neural Networks (CNN) is commonly carried out by plain supervised gradient descent. With sufficient training data, this leads to very competitive results for visual recognition tasks when starti... 详细信息
来源: 评论
CLASSIFICATION OF TUMOR HISTOPATHOLOGY VIA sparse FEATURE LEARNING
CLASSIFICATION OF TUMOR HISTOPATHOLOGY VIA SPARSE FEATURE LE...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Nandita Nayak Hang Chang Alexander Borowsky Paul Spellman Bahram Parvin Life Sciences Division Lawrence Berkeley National Laboratory Center for Comparative Medicine University of California Center for Spatial Systems Biomedicine Oregon Health Sciences University
Our goal is to decompose whole slide images (WSI) of histology sections into distinct patches (e.g., viable tumor, necrosis) so that statistics of distinct histopathology can be linked with the outcome. Such an analys... 详细信息
来源: 评论
LEARNING OVERCOMPLETE SPARSIFYING TRANSFORMS FOR SIGNAL PROCESSING
LEARNING OVERCOMPLETE SPARSIFYING TRANSFORMS FOR SIGNAL PROC...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Saiprasad Ravishankar Yoram Bresler Department of Electrical and Computer Engineering and the Coordinated Science Laboratory University of Illinois Urbana-Champaign IL 61801 USA
Adaptive sparse representations have been very popular in numerous applications in recent years. The learning of synthesis sparsifying dictionaries has particularly received much attention, and such adaptive dictionar... 详细信息
来源: 评论
DUAL-LAYER BAG-OF-FRAMES MODEL FOR MUSIC GENRE CLASSIFICATION
DUAL-LAYER BAG-OF-FRAMES MODEL FOR MUSIC GENRE CLASSIFICATIO...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Chin-Chia Michael Yeh Li Su Yi-Hsuan Yang Research Center for Information Technology Innovation Academia Sinica Taiwan
This paper concerns the development of a music dictionary-based model for summarizing local feature descriptors computed over time. Comparing to a holistic representation, this text-like, bag-of-frames representation ... 详细信息
来源: 评论
NON-RIGID 3D SHAPE RECOGNITION VIA DICTIONARY LEARNING
NON-RIGID 3D SHAPE RECOGNITION VIA DICTIONARY LEARNING
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing
作者: Yin Zhou Kai Liu Kenneth E. Barner University of Delaware Newark DE USA 19716 School of Electrical Engineering and Information Sichuan University China
Non-rigid 3D shape recognition is an important and challenging research topic in computer vision and pattern recognition. This paper presents a novel algorithm, called dictionary learning based on supervised locally l... 详细信息
来源: 评论
K-WEB: NONNEGATIVE DICTIONARY LEARNING FOR sparse IMAGE REPRESENTATIONS
K-WEB: NONNEGATIVE DICTIONARY LEARNING FOR SPARSE IMAGE REPR...
收藏 引用
IEEE International Conference on Image Processing
作者: Marco Bevilacqua Aline Roumy Christine Guillemot Marie-Line Alberi Morel INRIA Rennes Alcatel-Lucent Bell Labs France
This paper presents a new nonnegative dictionary learning method, to decompose an input data matrix into a dictionary of nonnegative atoms, and a representation matrix with a strict l~0-sparsity constraint. This const... 详细信息
来源: 评论
EDGE PRESERVING SINGLE IMAGE SUPER RESOLUTION IN sparse ENVIRONMENT
EDGE PRESERVING SINGLE IMAGE SUPER RESOLUTION IN SPARSE ENVI...
收藏 引用
IEEE International Conference on Image Processing
作者: Srimanta Mandal Anil Kumar Sao School of Computing and Electrical Engineering Indian Institute of Technology Mandi India
Quality of an image is associated with edge of the image. It is important to preserve the edge of the image while deriving high resolution (HR) image from low resolution (LR) image, also known as super-resolution (SR)... 详细信息
来源: 评论
Histograms of sparse Codes for Object Detection
Histograms of Sparse Codes for Object Detection
收藏 引用
IEEE Conference on Computer Vision and Pattern Recognition
作者: Xiaofeng Ren Deva Ramanan *** University of California
Object detection has seen huge progress in recent years, much thanks to the heavily-engineered Histograms of Oriented Gradients (HOG) features. Can we go beyond gradients and do better than HOG? We provide an affirmat... 详细信息
来源: 评论