咨询与建议

限定检索结果

文献类型

  • 5 篇 期刊文献

馆藏范围

  • 5 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 5 篇 工学
    • 3 篇 计算机科学与技术...
    • 1 篇 电气工程
    • 1 篇 控制科学与工程
    • 1 篇 化学工程与技术
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学

主题

  • 5 篇 sparse kernel re...
  • 1 篇 support vector r...
  • 1 篇 sediment transpo...
  • 1 篇 neural networks
  • 1 篇 structural risk ...
  • 1 篇 self-cleansing
  • 1 篇 nystrom method
  • 1 篇 basis hunting (b...
  • 1 篇 linear programmi...
  • 1 篇 low-rank approxi...
  • 1 篇 l1-norm on appro...
  • 1 篇 orthogonal least...
  • 1 篇 machine learning
  • 1 篇 significant vect...
  • 1 篇 orthogonal least...
  • 1 篇 nonlinear system...
  • 1 篇 open channel
  • 1 篇 non-uniform samp...
  • 1 篇 relevance vector...
  • 1 篇 nonlinear system...

机构

  • 1 篇 nanyang technol ...
  • 1 篇 peng cheng natl ...
  • 1 篇 univ elect sci &...
  • 1 篇 newcastle univ d...
  • 1 篇 huazhong univ sc...
  • 1 篇 salesforce res a...
  • 1 篇 moutai inst auto...
  • 1 篇 harbin inst tech...
  • 1 篇 charles sturt un...
  • 1 篇 univ southampton...
  • 1 篇 bilkent univ dep...
  • 1 篇 yasar univ dept ...

作者

  • 1 篇 tian peng
  • 1 篇 gao junbin
  • 1 篇 wang x. x.
  • 1 篇 harris c. j.
  • 1 篇 zhang qian
  • 1 篇 zhang fabin
  • 1 篇 arashloo shervin...
  • 1 篇 zeng chengbin
  • 1 篇 safari mir jafar...
  • 1 篇 xu zenglin
  • 1 篇 shi wei
  • 1 篇 liu xiaomao
  • 1 篇 yan genglong
  • 1 篇 liu xiaoyong
  • 1 篇 chen s.
  • 1 篇 hoi steven
  • 1 篇 shi daming

语言

  • 5 篇 英文
检索条件"主题词=sparse kernel regression"
5 条 记 录,以下是1-10 订阅
排序:
Non-uniform Nystrom approximation for sparse kernel regression: Theoretical analysis and experimental evaluation
收藏 引用
NEUROCOMPUTING 2022年 501卷 410-419页
作者: Zhang, Qian Shi, Wei Hoi, Steven Xu, Zenglin Univ Elect Sci & Technol China SMILE Lab Sch Comp Sci & Engn Chengdu 610031 Peoples R China Salesforce Res Asia Singapore Singapore Harbin Inst Technol Shenzhen Sch Comp Sci & Technol Shenzhen 510855 Peoples R China Peng Cheng Natl Lab Dept Network Intelligence Shenzhen 510855 Peoples R China
Solving a kernel regression problem usually suffers from expensive computation and storage costs due to the large kernel size. To tackle this problem, the Nystrom method is proposed and widely applied to large-scale k... 详细信息
来源: 评论
Linear Programming-Based sparse kernel regression with L1-Norm Minimization for Nonlinear System Modeling
收藏 引用
PROCESSES 2024年 第11期12卷 2358页
作者: Liu, Xiaoyong Yan, Genglong Zhang, Fabin Zeng, Chengbin Tian, Peng Moutai Inst Automat Dept Brewing Engn Renhuai 564507 Peoples R China
This paper integrates L1-norm structural risk minimization with L1-norm approximation error to develop a new optimization framework for solving the parameters of sparse kernel regression models, addressing the challen... 详细信息
来源: 评论
sparse kernel regression technique for self-cleansing channel design
收藏 引用
ADVANCED ENGINEERING INFORMATICS 2021年 47卷 101230-101230页
作者: Safari, Mir Jafar Sadegh Arashloo, Shervin Rahimzadeh Yasar Univ Dept Civil Engn Izmir Turkey Bilkent Univ Dept Comp Engn Ankara Turkey
The application of a robust learning technique is inevitable in the development of a self-cleansing sediment transport model. This study addresses this problem and advocates the use of sparse kernel regression (SKR) t... 详细信息
来源: 评论
Significant vector learning to construct sparse kernel regression models
收藏 引用
NEURAL NETWORKS 2007年 第7期20卷 791-798页
作者: Gao, Junbin Shi, Daming Liu, Xiaomao Charles Sturt Univ Sch Comp Sci Bathurst NSW 2795 Australia Nanyang Technol Univ Sch Comp Engn Singapore 639798 Singapore Huazhong Univ Sci & Technol Dept Math Wuhan 430074 Peoples R China
A novel significant vector (SV) regression algorithm is proposed in this paper based on an analysis of Chen's orthogonal least squares (OLS) regression algorithm. The proposed regularized SV algorithm finds the si... 详细信息
来源: 评论
NARX-based nonlinear system identification using orthogonal least squares basis hunting
收藏 引用
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 2008年 第1期16卷 78-84页
作者: Chen, S. Wang, X. X. Harris, C. J. Univ Southampton Sch Elect & Comp Sci Southampton SO17 1BJ Hants England Newcastle Univ Dept Human Genet Newcastle Upon Tyne NE1 3BZ Tyne & Wear England
An orthogonal least squares technique for basis hunting (OLS-BH) is proposed to construct sparse radial basis function (RBF) models for NARX-type nonlinear systems. Unlike most of the existing RBF or kernel modelling ... 详细信息
来源: 评论