咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程
    • 1 篇 控制科学与工程
    • 1 篇 计算机科学与技术...

主题

  • 1 篇 dimension reduct...
  • 1 篇 dimensionality r...
  • 1 篇 neural networks
  • 1 篇 vectors
  • 1 篇 optimization
  • 1 篇 sparse large-sca...
  • 1 篇 coevolution
  • 1 篇 collaboration
  • 1 篇 encoding
  • 1 篇 decision variabl...
  • 1 篇 evolutionary com...

机构

  • 1 篇 leiden univ leid...
  • 1 篇 anhui univ sch a...
  • 1 篇 anhui univ sch c...
  • 1 篇 anhui univ sch i...

作者

  • 1 篇 ding zhuanlian
  • 1 篇 zhang xingyi
  • 1 篇 liu wei
  • 1 篇 chen lei
  • 1 篇 sun dengdi

语言

  • 1 篇 英文
检索条件"主题词=sparse large-scale multiobjective optimization"
1 条 记 录,以下是1-10 订阅
排序:
Efficient sparse large-scale multiobjective optimization Based on Cross-scale Knowledge Fusion
收藏 引用
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS 2024年 第11期54卷 6989-7001页
作者: Ding, Zhuanlian Chen, Lei Sun, Dengdi Zhang, Xingyi Liu, Wei Anhui Univ Sch Internet Hefei 230039 Peoples R China Anhui Univ Sch Artificial Intelligence Hefei 230601 Peoples R China Anhui Univ Sch Comp Sci & Technol Hefei 230601 Peoples R China Leiden Univ Leiden Inst Adv Comp Sci NL-2333 CA Leiden Netherlands
Due to the curse of dimensionality and the unknown sparsity of search spaces, evolutionary algorithms face immense challenges in approximating optimal solutions for widely studied sparse large-scale multiobjective opt... 详细信息
来源: 评论