咨询与建议

限定检索结果

文献类型

  • 10 篇 期刊文献
  • 8 篇 会议

馆藏范围

  • 18 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 17 篇 工学
    • 9 篇 计算机科学与技术...
    • 4 篇 电气工程
    • 3 篇 测绘科学与技术
    • 3 篇 软件工程
    • 2 篇 仪器科学与技术
    • 2 篇 控制科学与工程
    • 1 篇 机械工程
    • 1 篇 光学工程
    • 1 篇 信息与通信工程
    • 1 篇 船舶与海洋工程
    • 1 篇 环境科学与工程(可...
  • 6 篇 理学
    • 3 篇 地球物理学
    • 2 篇 数学
    • 2 篇 物理学
  • 1 篇 农学
    • 1 篇 农业资源与环境
  • 1 篇 医学
    • 1 篇 临床医学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 18 篇 sparse nonnegati...
  • 3 篇 hyperspectral im...
  • 2 篇 blind source sep...
  • 2 篇 band selection
  • 2 篇 hyperspectral re...
  • 2 篇 independent comp...
  • 2 篇 feature extracti...
  • 2 篇 kurdyka-lojasiew...
  • 2 篇 block coordinate...
  • 2 篇 alternating mini...
  • 2 篇 adaptive endmemb...
  • 1 篇 spectral informa...
  • 1 篇 evaluation index...
  • 1 篇 matrix factoriza...
  • 1 篇 archetypal analy...
  • 1 篇 clustering
  • 1 篇 heavy ball metho...
  • 1 篇 one-class suppor...
  • 1 篇 sparse matrices
  • 1 篇 surface emg

机构

  • 2 篇 univ regensburg ...
  • 1 篇 city univ hong k...
  • 1 篇 chinese peoples ...
  • 1 篇 univ toulouse 1 ...
  • 1 篇 city univ hong k...
  • 1 篇 univ texas austi...
  • 1 篇 tel aviv univ sc...
  • 1 篇 linyi luozhuang ...
  • 1 篇 hunan univ coll ...
  • 1 篇 city univ hong k...
  • 1 篇 school of artifi...
  • 1 篇 univ aveiro ieet...
  • 1 篇 natl clin res ct...
  • 1 篇 technion israel ...
  • 1 篇 montclair state ...
  • 1 篇 city univ hong k...
  • 1 篇 sao paulo state ...
  • 1 篇 agh univ sci & t...
  • 1 篇 ait austrian ins...
  • 1 篇 zhejiang police ...

作者

  • 2 篇 lang e. w.
  • 2 篇 tome a. m.
  • 2 篇 sabach shoham
  • 2 篇 wang jun
  • 1 篇 zhang tao
  • 1 篇 li shutao
  • 1 篇 puntonet c. g.
  • 1 篇 huali li
  • 1 篇 zhou hongzhen
  • 1 篇 rahul mazumder
  • 1 篇 jun xiong
  • 1 篇 li huali
  • 1 篇 jing zhou
  • 1 篇 bolte jerome
  • 1 篇 gorriz j. m.
  • 1 篇 wang shuyuan
  • 1 篇 stadlthanner k.
  • 1 篇 shutao li
  • 1 篇 lai yenming mark
  • 1 篇 ji-ming li 1 2 y...

语言

  • 17 篇 英文
  • 1 篇 其他
检索条件"主题词=sparse nonnegative matrix factorization"
18 条 记 录,以下是1-10 订阅
排序:
sparse nonnegative matrix factorization Based on a Hyperbolic Tangent Approximation of L0-Norm and Neurodynamic Optimization  12
Sparse Nonnegative Matrix Factorization Based on a Hyperboli...
收藏 引用
12th International Conference on Advanced Computational Intelligence (ICACI)
作者: Li, Xinqi Wang, Jun Kwong, Sam City Univ Hong Kong Dept Comp Sci Kowloon Hong Kong Peoples R China City Univ Hong Kong Shenzhen Res Institude Shenzhen Peoples R China
sparse nonnegative matrix factorization (SNMF) attracts much attention in the past two decades because its sparse and part-based representations are desirable in many machine learning applications. Due to the combinat... 详细信息
来源: 评论
sparse nonnegative matrix factorization Based on Collaborative Neurodynamic Optimization  9
Sparse Nonnegative Matrix Factorization Based on Collaborati...
收藏 引用
9th International Conference on Information Science and Technology (ICIST)
作者: Che, Hangjun Wang, Jun City Univ Hong Kong Dept Comp Sci Hong Kong Peoples R China City Univ Hong Kong Shenzhen Res Inst Shenzhen Hong Kong Peoples R China City Univ Hong Kong Sch Data Sci Hong Kong Peoples R China
This paper presents a collaborative neurodynamic approach to sparse nonnegative matrix factorization (SNMF). SNMF is formulated as a bilevel optimization problem. In the lower level of the problem, the sparsity of fac... 详细信息
来源: 评论
Clustering-based hyperspectral band selection using sparse nonnegative matrix factorization
收藏 引用
Journal of Zhejiang University-Science C(Computers and Electronics) 2011年 第7期12卷 542-549页
作者: Ji-ming LI 1,2,Yun-tao QIAN 1 (1 School of Computer Science and Technology,Zhejiang University,Hangzhou 310027,China) (2 Zhejiang Police College,Hangzhou 310053,China) School of Computer Science and Technology Zhejiang University Hangzhou China Zhejiang Police College Hangzhou China
Hyperspectral imagery generally contains a very large amount of data due to hundreds of spectral *** selection is often applied firstly to reduce computational cost and facilitate subsequent tasks such as land-cover c... 详细信息
来源: 评论
Band selection using sparse nonnegative matrix factorization with the thresholded Earth's mover distance for hyperspectral imagery classification
收藏 引用
EARTH SCIENCE INFORMATICS 2015年 第4期8卷 907-918页
作者: Sun, Weiwei Li, Weiyue Li, Jialin Lai, Yenming Mark Ningbo Univ Coll Architectural Engn Civil Engn & Environm Ningbo 315211 Zhejiang Peoples R China Shanghai Normal Univ Inst Urban Dev Shanghai 200234 Peoples R China Univ Texas Austin Inst Computat Engn & Sci Austin TX 78712 USA
A sparse nonnegative matrix factorization method with the thresholded ground distance (SNMF-TEMD) is proposed to solve the band selection problem in hyperspectral imagery (HSI) classification. The SNMF-TEMD assumes th... 详细信息
来源: 评论
Data Classification with Ensembles of One-Class Support Vector Machines and sparse nonnegative matrix factorization  7
Data Classification with Ensembles of One-Class Support Vect...
收藏 引用
7th Asian Conference on Intelligent Information and Database Systems (ACIIDS)
作者: Cyganek, Boguslaw Krawczyk, Bartosz AGH Univ Sci & Technol Al Mickiewicza 30 PL-30059 Krakow Poland Wroclaw Univ Technol PL-50370 Wroclaw Poland
The paper presents a method for data classification with ensemble of one-class classifiers based on data segmentation. Each data class is partitioned with the nonnegative matrix factorization (NMF) algorithm with spar... 详细信息
来源: 评论
ADAPTIVE ENDMEMBER EXTRACTION BASED sparse nonnegative matrix factorization WITH SPATIAL LOCAL INFORMATION
ADAPTIVE ENDMEMBER EXTRACTION BASED SPARSE NONNEGATIVE MATRI...
收藏 引用
IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
作者: Li, Huali Li, Shutao Zhang, Liangpei Hunan Univ Coll Elect & Informat Engn Changsha 410082 Hunan Peoples R China Wuhan Univ State Key Lab Informat Engn Surveying Mapping & R Wuhan Peoples R China
Hyperspectral Unmixing aims at getting the endmember signature and their corresponding abundance maps from highly mixed Hyperspectral image. nonnegative matrix factorization (NMF) is a widely used method for spectral ... 详细信息
来源: 评论
ADAPTIVE ENDMEMBER EXTRACTION BASED sparse nonnegative matrix factorization WITH SPATIAL LOCAL INFORMATION
ADAPTIVE ENDMEMBER EXTRACTION BASED SPARSE NONNEGATIVE MATRI...
收藏 引用
IEEE International Geoscience and Remote Sensing Symposium
作者: Huali Li Shutao Li Liangpei Zhang Coll. of Electr. & Inf. Eng. Hunan Univ. Changsha China
Hyperspectral Unmixing aims at getting the endmember signature and their corresponding abundance maps from highly mixed Hyperspectral image. nonnegative matrix factorization (NMF) is a widely used method for spectral ... 详细信息
来源: 评论
On the use of sparse signal decomposition in the analysis of multi-channel surface electromyograms
收藏 引用
SIGNAL PROCESSING 2006年 第3期86卷 603-623页
作者: Theis, FJ García, GA Univ Regensburg Inst Biophys D-93040 Regensburg Germany Osaka Univ Dept Bioinformat Engn Osaka Japan
The decomposition of surface electromyogram data sets (s-EMG) is studied using blind source separation techniques based on sparseness;namely independent component analysis, sparse nonnegative matrix factorization, and... 详细信息
来源: 评论
Proximal alternating linearized minimization for nonconvex and nonsmooth problems
收藏 引用
MATHEMATICAL PROGRAMMING 2014年 第1-2期146卷 459-494页
作者: Bolte, Jerome Sabach, Shoham Teboulle, Marc Univ Toulouse 1 GREMAQ TSE Manufacture Tabacs F-31015 Toulouse France Tel Aviv Univ Sch Math Sci IL-69978 Tel Aviv Israel
We introduce a proximal alternating linearized minimization (PALM) algorithm for solving a broad class of nonconvex and nonsmooth minimization problems. Building on the powerful Kurdyka-Aojasiewicz property, we derive... 详细信息
来源: 评论
Inertial Proximal Alternating Linearized Minimization (iPALM) for Nonconvex and Nonsmooth Problems
收藏 引用
SIAM JOURNAL ON IMAGING SCIENCES 2016年 第4期9卷 1756-1787页
作者: Pock, Thomas Sabach, Shoham Graz Univ Technol Inst Comp Graph & Vis A-8010 Graz Austria AIT Austrian Inst Technol GmbH Digital Safety & Secur Dept A-1220 Vienna Austria Technion Israel Inst Technol Dept Ind Engn & Management IL-3200003 Haifa Israel
In this paper we study nonconvex and nonsmooth optimization problems with semialgebraic data, where the variables vector is split into several blocks of variables. The problem consists of one smooth function of the en... 详细信息
来源: 评论