咨询与建议

限定检索结果

文献类型

  • 87 篇 期刊文献
  • 19 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 108 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 68 篇 工学
    • 39 篇 计算机科学与技术...
    • 20 篇 电气工程
    • 12 篇 控制科学与工程
    • 7 篇 仪器科学与技术
    • 7 篇 软件工程
    • 6 篇 信息与通信工程
    • 5 篇 生物工程
    • 4 篇 电子科学与技术(可...
    • 3 篇 测绘科学与技术
    • 2 篇 材料科学与工程(可...
    • 2 篇 石油与天然气工程
    • 2 篇 环境科学与工程(可...
    • 1 篇 机械工程
    • 1 篇 光学工程
  • 49 篇 理学
    • 28 篇 数学
    • 24 篇 统计学(可授理学、...
    • 5 篇 生物学
    • 4 篇 化学
    • 3 篇 地球物理学
    • 2 篇 物理学
    • 2 篇 系统科学
    • 1 篇 生态学
  • 14 篇 管理学
    • 13 篇 管理科学与工程(可...
  • 11 篇 医学
    • 7 篇 临床医学
    • 5 篇 基础医学(可授医学...
    • 4 篇 特种医学
  • 10 篇 经济学
    • 8 篇 应用经济学
    • 6 篇 理论经济学
  • 4 篇 农学
    • 2 篇 作物学
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...

主题

  • 108 篇 sparse principal...
  • 23 篇 principal compon...
  • 6 篇 feature selectio...
  • 5 篇 dimension reduct...
  • 5 篇 dimensionality r...
  • 4 篇 optimization
  • 4 篇 singular value d...
  • 4 篇 feature extracti...
  • 4 篇 semidefinite pro...
  • 3 篇 generalized line...
  • 3 篇 sparse matrices
  • 3 篇 exploratory data...
  • 3 篇 community detect...
  • 3 篇 kernel principal...
  • 3 篇 mortality foreca...
  • 3 篇 covariance matri...
  • 3 篇 matrix decomposi...
  • 3 篇 sparsity
  • 3 篇 gene expression ...
  • 3 篇 high-dimensional...

机构

  • 2 篇 princeton univ d...
  • 2 篇 qufu normal univ...
  • 2 篇 harbin inst tech...
  • 2 篇 univ amsterdam b...
  • 2 篇 univ michigan de...
  • 2 篇 univ aegean dept...
  • 2 篇 univ bucharest f...
  • 2 篇 city univ london...
  • 2 篇 qufu normal univ...
  • 2 篇 univ delaware de...
  • 2 篇 wageningen univ ...
  • 2 篇 tel aviv univ sc...
  • 2 篇 harbin inst tech...
  • 2 篇 univ copenhagen ...
  • 1 篇 edhec business s...
  • 1 篇 boston coll dept...
  • 1 篇 middlesex univ d...
  • 1 篇 zhejiang univ de...
  • 1 篇 nanyang technol ...
  • 1 篇 dtu informat ima...

作者

  • 3 篇 haberman s.
  • 3 篇 hatzopoulos p.
  • 3 篇 luss ronny
  • 2 篇 barrios erniel b...
  • 2 篇 camacho j.
  • 2 篇 chaib souleyman
  • 2 篇 rusu cristian
  • 2 篇 arce gonzalo r.
  • 2 篇 westerhuis j. a.
  • 2 篇 cuadros angela p...
  • 2 篇 smilde a. k.
  • 2 篇 mao tianyi
  • 2 篇 tan jieqing
  • 2 篇 kim hyun hak
  • 2 篇 gu yanfeng
  • 2 篇 lei jing
  • 2 篇 tan mingkui
  • 2 篇 teboulle marc
  • 2 篇 liu jin-xing
  • 2 篇 yao hongxun

语言

  • 103 篇 英文
  • 5 篇 其他
检索条件"主题词=sparse principal component analysis"
108 条 记 录,以下是1-10 订阅
排序:
sparse principal component analysis With Preserved Sparsity Pattern
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2019年 第7期28卷 3274-3285页
作者: Seghouane, Abd-Krim Shokouhi, Navid Koch, Inge Univ Melbourne Dept Elect & Elect Engn Melbourne Vic 3010 Australia Univ Western Australia Dept Math & Stat Perth WA 6009 Australia
principal component analysis (PCA) is widely used for feature extraction and dimension reduction in pattern recognition and data analysis. Despite its popularity, the reduced dimension obtained from the PCA is difficu... 详细信息
来源: 评论
sparse principal component analysis for Natural Language Processing
收藏 引用
Annals of Data Science 2023年 第1期10卷 25-41页
作者: Drikvandi, Reza Lawal, Olamide Department of Computing and Mathematics Manchester Metropolitan University Manchester United Kingdom
High dimensional data are rapidly growing in many different disciplines, particularly in natural language processing. The analysis of natural language processing requires working with high dimensional matrices of word... 详细信息
来源: 评论
sparse principal component analysis by choice of norm
收藏 引用
JOURNAL OF MULTIVARIATE analysis 2013年 第1期114卷 127-160页
作者: Qi, Xin Luo, Ruiyan Zhao, Hongyu Georgia State Univ Dept Math & Stat Atlanta GA 30303 USA Yale Univ Dept Epidemiol & Publ Hlth New Haven CT 06520 USA
Recent years have seen the developments of several methods for sparse principal component analysis due to its importance in the analysis of high dimensional data. Despite the demonstration of their usefulness in pract... 详细信息
来源: 评论
sparse principal component analysis with measurement errors
收藏 引用
JOURNAL OF STATISTICAL PLANNING AND INFERENCE 2016年 175卷 87-99页
作者: Shi, Jianhong Song, Weixing Shanxi Normal Univ Sch Math & Comp Sci Linfen 041000 Shanxi Peoples R China Kansas State Univ Dept Stat Manhattan KS 66503 USA
Traditional principal component analysis often produces non-zero loadings, which makes it hard to interpret the principal components. This drawback can be overcome by the sparse principal component analysis procedures... 详细信息
来源: 评论
sparse principal component analysis VIA VARIABLE PROJECTION
收藏 引用
SIAM JOURNAL ON APPLIED MATHEMATICS 2020年 第2期80卷 977-1002页
作者: Erichson, N. Benjamin Zheng, Peng Manohar, Krithika Brunton, Steven L. Kutz, J. Nathan Aravkin, Aleksandr Y. Univ Calif Berkeley Dept Stat Berkeley CA 94720 USA Univ Washington Dept Appl Math Seattle WA 98195 USA Univ Washington Dept Mech Engn Seattle WA 98195 USA
sparse principal component analysis (SPCA) has emerged as a powerful technique for modern data analysis, providing improved interpretation of low-rank structures by identifying localized spatial structures in the data... 详细信息
来源: 评论
sparse principal component analysis in medical shape modeling
Sparse principal component analysis in medical shape modelin...
收藏 引用
Medical Imaging 2006 Conference
作者: Sjostrand, Karl Stegmann, Mikkel B. Larsen, Rasmus Tech Univ Denmark Informat & Math Modelling Richard Petersens Plads DK-2800 Lyngby Denmark
principal component analysis (PCA) is a widely used tool in medical image analysis for data reduction, model building, and data understanding and exploration. While PCA is a holistic approach where each new variable i... 详细信息
来源: 评论
Clustering and feature selection using sparse principal component analysis
收藏 引用
OPTIMIZATION AND ENGINEERING 2010年 第1期11卷 145-157页
作者: Luss, Ronny d'Aspremont, Alexandre Princeton Univ ORFE Dept Princeton NJ 08544 USA
In this paper, we study the application of sparse principal component analysis (PCA) to clustering and feature selection problems. sparse PCA seeks sparse factors, or linear combinations of the data variables, explain... 详细信息
来源: 评论
Demixed sparse principal component analysis Through Hybrid Structural Regularizers
收藏 引用
IEEE ACCESS 2021年 9卷 103075-103090页
作者: Zhang, Yan Xu, Haoqing Southeast Univ Sch Comp Sci & Engn Nanjing 211189 Jiangsu Peoples R China Southeast Univ Sch Artificial Intelligence Nanjing 211189 Jiangsu Peoples R China
Recently, the sparse representation of multivariate data has gained great popularity in real-world applications like neural activity analysis. Many previous analyses for these data utilize sparse principal component a... 详细信息
来源: 评论
Projection algorithms for nonconvex minimization with application to sparse principal component analysis
收藏 引用
JOURNAL OF GLOBAL OPTIMIZATION 2016年 第4期65卷 657-676页
作者: Hager, William W. Phan, Dzung T. Zhu, Jiajie Univ Florida Dept Math POB 118105 Gainesville FL 32611 USA IBM TJ Watson Res Ctr Yorktown Hts NY 10598 USA Boston Coll Dept Comp Sci Chestnut Hill MA 02167 USA
We consider concave minimization problems over nonconvex sets. Optimization problems with this structure arise in sparse principal component analysis. We analyze both a gradient projection algorithm and an approximate... 详细信息
来源: 评论
A novel super-resolution image and video reconstruction approach based on Newton-Thiele's rational kernel in sparse principal component analysis
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2017年 第7期76卷 9463-9483页
作者: He, Lei Tan, Jieqing Huo, Xing Xie, Chengjun Hefei Univ Technol Sch Comp & Informat Sch Math Hefei 230009 Peoples R China Chinese Acad Sci Inst Intelligent Machines Hefei Peoples R China
In this paper, we propose a new image and video sequences reconstruction approach, where the Newton-Thiele's vector valued rational interpolation is combined with the sparse principal component analysis. Through o... 详细信息
来源: 评论