咨询与建议

限定检索结果

文献类型

  • 29 篇 会议
  • 27 篇 期刊文献
  • 1 篇 学位论文

馆藏范围

  • 57 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 52 篇 工学
    • 45 篇 计算机科学与技术...
    • 16 篇 电气工程
    • 5 篇 信息与通信工程
    • 5 篇 土木工程
    • 5 篇 交通运输工程
    • 3 篇 测绘科学与技术
    • 2 篇 控制科学与工程
    • 2 篇 软件工程
    • 1 篇 机械工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 化学工程与技术
    • 1 篇 环境科学与工程(可...
    • 1 篇 城乡规划学
  • 6 篇 理学
    • 3 篇 物理学
    • 2 篇 地理学
    • 1 篇 化学
  • 6 篇 管理学
    • 6 篇 管理科学与工程(可...
  • 2 篇 医学
    • 2 篇 临床医学

主题

  • 57 篇 spatial-temporal...
  • 5 篇 trajectory
  • 5 篇 travel time esti...
  • 4 篇 urban flow infer...
  • 4 篇 roads
  • 4 篇 urban computing
  • 3 篇 global positioni...
  • 3 篇 deep learning
  • 3 篇 task analysis
  • 3 篇 graph neural net...
  • 3 篇 predictive model...
  • 2 篇 graph neural net...
  • 2 篇 representation l...
  • 2 篇 convex hull algo...
  • 2 篇 transformer
  • 2 篇 network connecti...
  • 2 篇 deep neural netw...
  • 2 篇 loctional data
  • 2 篇 transformers
  • 2 篇 active area

机构

  • 4 篇 cent south univ ...
  • 4 篇 univ iowa iowa c...
  • 4 篇 worcester polyte...
  • 3 篇 lenovo grp ltd p...
  • 3 篇 beijing jiaotong...
  • 3 篇 south china univ...
  • 2 篇 jd intelligent c...
  • 2 篇 univ notre dame ...
  • 2 篇 beijing informat...
  • 2 篇 univ elect sci &...
  • 2 篇 chinese acad sci...
  • 2 篇 univ sydney nsw
  • 2 篇 hezhixin shandon...
  • 2 篇 beijing key lab ...
  • 1 篇 china univ min &...
  • 1 篇 fudan univ sch c...
  • 1 篇 univ queensland ...
  • 1 篇 mit dept urban p...
  • 1 篇 baidu inc people...
  • 1 篇 univ pittsburgh ...

作者

  • 5 篇 li yanhua
  • 4 篇 huang chao
  • 4 篇 wang senzhang
  • 4 篇 zhang xin
  • 4 篇 luo jun
  • 4 篇 zhou xun
  • 3 篇 wang chenxing
  • 3 篇 xu yong
  • 3 篇 wan huaiyu
  • 3 篇 lin youfang
  • 3 篇 wang jianxin
  • 3 篇 wei tonglong
  • 3 篇 zheng yuhao
  • 3 篇 lin yan
  • 3 篇 guo shengnan
  • 2 篇 zhao fang
  • 2 篇 cai zihao
  • 2 篇 luo haiyong
  • 2 篇 bi jichao
  • 2 篇 li li

语言

  • 55 篇 英文
  • 2 篇 其他
检索条件"主题词=spatial-temporal data mining"
57 条 记 录,以下是1-10 订阅
排序:
A novel physics-guided spatial-temporal data mining method with external and internal causal attention for drilling risk evaluation
收藏 引用
JOURNAL OF INDUSTRIAL INFORMATION INTEGRATION 2024年 42卷
作者: Qu, Fengtao Liao, Hualin Wang, Huajian Liu, Jiansheng Wu, Tianyu Xu, Yuqiang China Univ Petr East China Sch Petr Engn Qingdao 266580 Shandong Peoples R China MATRIX Corp SINOPEC Qingdao 266071 Shandong Peoples R China
As drilling technology advances and operations extend into more complex geological environments, evaluating drilling risks has become increasingly complex, challenging the effectiveness of traditional methods. The nov... 详细信息
来源: 评论
Cross-Transportation-Mode Knowledge Transfer for Trajectory Recovery With Meta Learning
收藏 引用
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2025年
作者: Wang, Chenxing Zhao, Fang Luo, Haiyong Sun, Poly Z. H. Fang, Yuchen Beijing Univ Posts & Telecommun Sch Comp Sci Natl Pilot Software Engn Sch Beijing 100876 Peoples R China Chinese Acad Sci Inst Comp Technol Beijing Key Lab Mobile Comp & Pervas Device Beijing 100080 Peoples R China East China Normal Univ Sch Psychol & Cognit Sci Shanghai 200062 Peoples R China Univ Elect Sci & Technol China Sch Comp Sci & Engn Chengdu 610054 Sichuan Peoples R China
Transportation mode-aware trajectory recovery is the fundamental for individual oriented downstream tasks in intelligent transportation systems. Different from vehicle based trajectory recovery, it suffers from the he... 详细信息
来源: 评论
ConDTC: Contrastive Deep Trajectory Clustering for Fine-Grained Mobility Pattern mining
收藏 引用
IEEE TRANSACTIONS ON BIG data 2025年 第2期11卷 333-344页
作者: Si, Junjun Yang, Jin Xiang, Yang Li, Li Tu, Bo Zhang, Rongqing Commun Univ China Sch Comp & Cyber Sci Beijing 100024 Peoples R China Hezhixin Shandong Big Data Technol Co Ltd Jinan 250001 Peoples R China Beijing Informat Sci & Technol Univ Beijing 100192 Peoples R China Tongji Univ Sch Software Engn Shanghai 200070 Peoples R China
Trajectory clustering is a cornerstone task in the field of trajectory mining. With the proliferation of deep learning, deep trajectory clustering has been widely researched to mine mobility patterns from massive unla... 详细信息
来源: 评论
RLER-TTE: An Efficient and Effective Framework for En Route Travel Time Estimation with Reinforcement Learning
收藏 引用
Proceedings of the ACM on Management of data 2025年 第1期3卷 1-26页
作者: Zhihan Zheng Haitao Yuan Minxiao Chen Shangguang Wang Beijing University of Posts and Telecommunications Beijing China Nanyang Technological University Singapore Singapore
En Route Travel Time Estimation (ER-TTE) aims to learn driving patterns from traveled routes to achieve rapid and accurate real-time predictions. However, existing methods ignore the complexity and dynamism of real-wo... 详细信息
来源: 评论
MFDS-STGCN: Predicting the Behaviors of College Students With Fine-Grained spatial-temporal Activities data
收藏 引用
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 2024年 第1期12卷 254-265页
作者: Zhou, Dongbo Yu, Hongwei Yu, Jie Zhao, Shuai Xu, Wenhui Li, Qianqian Cai, Fengyin Cent China Normal Univ Fac Artificial Intelligence Educ Wuhan 430079 Peoples R China Beihang Univ Coll Software Beijing 100191 Peoples R China Wuhan Univ State Key Lab Informat Engn Surveying Wuhan 430072 Peoples R China
mining and predicting college students behaviors from fine-grained spatial-temporal campus activity data play key roles in the academic success and personal development of college students. Most of the existing behavi... 详细信息
来源: 评论
Inductive and adaptive graph convolution networks equipped with constraint task for spatial-temporal traffic data kriging
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2024年 284卷
作者: Wei, Tonglong Lin, Youfang Guo, Shengnan Lin, Yan Zhao, Yiji Jin, Xiyuan Wu, Zhihao Wan, Huaiyu Beijing Jiaotong Univ Sch Comp & Informat Technol Beijing 100044 Peoples R China Beijing Key Lab Traff Data Anal & Min Beijing 100044 Peoples R China
In intelligent transportation systems (ITS), deploying fine-grained sensors to continuously collect spatial- temporal traffic data is important but impractical due to the expensive cost. Fortunately, spatial-temporal ... 详细信息
来源: 评论
Multi-Stage Fusion Framework for Short-Term Passenger Flow Forecasting in Urban Rail Transit Systems Using Multi-Source data
收藏 引用
TRANSPORTATION RESEARCH RECORD 2024年 第9期2678卷 18-36页
作者: Chen, Yijie Zhang, Jinlei Lu, Yuan Yang, Kuo Liu, Hanxiao Liang, Ying Beijing Jiaotong Univ Sch Syst Sci Beijing Peoples R China Beijing Jiaotong Univ Sch Architecture & Design Beijing Peoples R China Beijing Jiaotong Univ Sch Comp & Informat Technol Beijing Peoples R China Beijing Gen Municipal Engn Design & Res Inst Co Lt Beijing Peoples R China Xi An Rail Transit Grp Co Ltd Operat Branch Xian Peoples R China
To improve real-time operation and management in urban rail transit (URT) systems, accurate and reliable short-term passenger flow forecasting at the network level is a crucial task. Although numerous endeavors have b... 详细信息
来源: 评论
Predicting ocean salinity and temperature variations using data mining and fuzzy inference
收藏 引用
INTERNATIONAL JOURNAL OF FUZZY SYSTEMS 2007年 第3期9卷 143-151页
作者: Huang, Yo-Ping Kao, Li-Jen Sandnes, Frode-Eika Tatung Univ Dept Comp Sci & Engn Taipei 10451 Taiwan
Global ocean salinity/temperature variations are attracting increasing attention, due to their influence on ocean-atmospheric changes and their potential for improved climate forecasting. The goal is to analyze histor... 详细信息
来源: 评论
Towards Effective Fusion and Forecasting of Multimodal Spatio-temporal data for Smart Mobility  24
Towards Effective Fusion and Forecasting of Multimodal Spati...
收藏 引用
33rd ACM International Conference on Information and Knowledge Management (CIKM)
作者: Wang, Chenxing Beijing Univ Posts & Telecommun Sch Comp Sci Beijing Peoples R China
With the rapid development of location based services, multimodal spatio-temporal (ST) data including trajectories, transportation modes, traffic flow and social check-ins are being collected for deep learning based m... 详细信息
来源: 评论
A Distributed Framework for Online Stream data Clustering  20th
A Distributed Framework for Online Stream Data Clustering
收藏 引用
20th International Conference on Algorithms and Architectures for Parallel Processing (ICA3PP)
作者: Ding, Jiafeng Fang, Junhua Chao, Pingfu Xu, Jiajie Zhao, PengPeng Zhao, Lei Soochow Univ Dept Comp Sci & Technol Suzhou Peoples R China Univ Queensland Brisbane Qld Australia
The recent prevalence of positioning sensors and mobile devices generates a massive amount of spatial-temporal data from moving objects in real-time. As one of the fundamental processes in data analysis, the clusterin... 详细信息
来源: 评论