咨询与建议

限定检索结果

文献类型

  • 36 篇 期刊文献
  • 11 篇 会议

馆藏范围

  • 47 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 47 篇 工学
    • 28 篇 计算机科学与技术...
    • 17 篇 电气工程
    • 6 篇 测绘科学与技术
    • 6 篇 环境科学与工程(可...
    • 5 篇 软件工程
    • 4 篇 信息与通信工程
    • 3 篇 土木工程
    • 2 篇 交通运输工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 电子科学与技术(可...
    • 1 篇 控制科学与工程
    • 1 篇 建筑学
    • 1 篇 船舶与海洋工程
    • 1 篇 航空宇航科学与技...
  • 10 篇 理学
    • 6 篇 地球物理学
    • 2 篇 物理学
    • 1 篇 地理学
    • 1 篇 大气科学
    • 1 篇 海洋科学
  • 7 篇 管理学
    • 5 篇 管理科学与工程(可...
    • 1 篇 公共管理
    • 1 篇 图书情报与档案管...
  • 6 篇 医学
    • 5 篇 临床医学
    • 1 篇 公共卫生与预防医...

主题

  • 47 篇 spatial-temporal...
  • 9 篇 deep learning
  • 6 篇 predictive model...
  • 4 篇 urban computing
  • 3 篇 graph neural net...
  • 3 篇 urban areas
  • 3 篇 oceans
  • 3 篇 logic gates
  • 3 篇 graph neural net...
  • 3 篇 correlation
  • 2 篇 photovoltaic pow...
  • 2 篇 trajectory
  • 2 篇 gru
  • 2 篇 semantics
  • 2 篇 feature extracti...
  • 2 篇 remote sensing
  • 2 篇 biological syste...
  • 2 篇 accuracy
  • 2 篇 salinity (geophy...
  • 2 篇 forecasting

机构

  • 2 篇 northeast elect ...
  • 2 篇 univ chinese aca...
  • 2 篇 adv micro device...
  • 2 篇 lehigh univ beth...
  • 2 篇 rutgers state un...
  • 2 篇 florida state un...
  • 2 篇 hunan univ coll ...
  • 1 篇 huazhong univ sc...
  • 1 篇 informat ctr dep...
  • 1 篇 fudan univ sch c...
  • 1 篇 penn state univ ...
  • 1 篇 minist educ engn...
  • 1 篇 harbin inst tech...
  • 1 篇 univ newcastle p...
  • 1 篇 school of econom...
  • 1 篇 nanjing tech uni...
  • 1 篇 univ putra malay...
  • 1 篇 natl geomatics c...
  • 1 篇 univ hlth & reha...
  • 1 篇 harbin inst tech...

作者

  • 3 篇 yang yu
  • 2 篇 zhang desheng
  • 2 篇 huang chao
  • 2 篇 hong zhiqing
  • 2 篇 yu wentao
  • 2 篇 li xutao
  • 2 篇 zhong shuxin
  • 2 篇 ye yunming
  • 2 篇 zhao jing
  • 2 篇 fan siyuan
  • 2 篇 liu yuning
  • 2 篇 li jing
  • 2 篇 yang guang
  • 2 篇 liu qinhuo
  • 2 篇 lyu wenjun
  • 2 篇 wang guang
  • 2 篇 liu chenxi
  • 2 篇 zhang baoquan
  • 1 篇 wu hu
  • 1 篇 pei jian

语言

  • 46 篇 英文
  • 1 篇 其他
检索条件"主题词=spatial-temporal prediction"
47 条 记 录,以下是1-10 订阅
排序:
spatial-temporal prediction of vegetation index with a convolutional GRU network
Spatial-temporal prediction of vegetation index with a convo...
收藏 引用
IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
作者: Yu, Wentao Li, Jing Liu, Qinhuo Beijing Normal Univ Chinese Acad Sci Aerosp Informat Res Inst State Key Lab Remote Sensing Sci Beijing 100101 Peoples R China Univ Chinese Acad Sci Beijing 100049 Peoples R China
Normalized difference vegetation index (NDVI) is a key parameter in land use/cover change and terrestrial modelling studies. With the accumulation of satellite records in the past few decades, the spatial-temporal pre... 详细信息
来源: 评论
Federated meta-learning for spatial-temporal prediction
收藏 引用
NEURAL COMPUTING & APPLICATIONS 2022年 第13期34卷 10355-10374页
作者: Li, Wenzhu Wang, Shuang Northeastern Univ Shenyang Peoples R China
spatial-temporal prediction is a fundamental problem for constructing smart city, and existing approaches by deep learning models have achieved excellent success based on a large volume of datasets. However, data priv... 详细信息
来源: 评论
spatial-temporal prediction of Vegetation Index With Deep Recurrent Neural Networks
收藏 引用
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 2022年 19卷 1页
作者: Yu, Wentao Li, Jing Liu, Qinhuo Zhao, Jing Dong, Yadong Wang, Cong Lin, Shangrong Zhu, Xinran Zhang, Hu Beijing Normal Univ Chinese Acad Sci Jointly Sponsored Aerosp Informat Res Inst State Key Lab Remote Sensing Sci Beijing 100101 Peoples R China Univ Chinese Acad Sci Beijing 100049 Peoples R China
Vegetation index (VI) derived from remotely sensed images is a proxy of terrestrial vegetation information and widely used in land monitoring and global change studies. Recently, the prediction of vegetation propertie... 详细信息
来源: 评论
Learning from Multiple Cities: A Meta-Learning Approach for spatial-temporal prediction  19
Learning from Multiple Cities: A Meta-Learning Approach for ...
收藏 引用
World Wide Web Conference (WWW)
作者: Yao, Huaxiu Liu, Yiding Wei, Ying Tang, Xianfeng Li, Zhenhui Penn State Univ University Pk PA 16802 USA Nanyang Technol Univ Singapore Singapore Tencent AI Lab Shenzhen Peoples R China
spatial-temporal prediction is a fundamental problem for constructing smart city, which is useful for tasks such as traffic control, taxi dispatching, and environment policy making. Due to data collection mechanism, i... 详细信息
来源: 评论
U-shape spatial-temporal prediction Network based on 3D Convolution and BDLSTM  4
U-shape Spatial-Temporal Prediction Network based on 3D Conv...
收藏 引用
4th IEEE International Conference on Software Engineering and Artificial Intelligence (SEAI)
作者: Peng, Ge Shi, Chunchao Zhong, Yujing Ai, Xinyu Baoshan Univ Sch Big Data Baoshan Yunnan Peoples R China
spatial-temporal prediction is widely used in data prediction tasks such as video, weather, traffic flow prediction. How to utilize the time domain and spatial domain information effectively or predicting accurate dat... 详细信息
来源: 评论
Improved LSTM spatial-temporal prediction Method for Power Grid IoT Analysis
Improved LSTM Spatial-temporal Prediction Method for Power G...
收藏 引用
IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT)
作者: Li, Ming Han, Xingwang Huang, Hua Ni, Jinchao Cui, Bo Cheng, Hui Liu, Mingfeng Wang, Xie State Grid Shandong Elect Power Co Jinan Shandong Peoples R China State Grid Qingdao Power Supply Co Qingdao Shandong Peoples R China Nanjing Univ Finance & Econ Nanjing Jiangsu Peoples R China
Along with the development of IoT (Internet of Things), many sensors have been equipped in power grid system to monitor the status of the electricity infrastructure. It is necessary to predict the possible changes fro... 详细信息
来源: 评论
A robust spatial-temporal prediction model for photovoltaic power generation based on deep learning
收藏 引用
COMPUTERS & ELECTRICAL ENGINEERING 2023年 第1期110卷
作者: Wang, Zun Wang, Yashun Cao, Shenglei Fan, Siyuan Zhang, Yanhui Liu, Yuning CLP Huachuang Power Technol Res Co Ltd Suzhou 215123 Peoples R China Northeast Elect Power Univ Sch Automat Engn Jilin 132012 Peoples R China Chinese Acad Sci Shenzhen Inst Adv Technol Shenzhen 518055 Peoples R China Adv Micro Devices Inc Shanghai 200131 Peoples R China
The accurate spatial-temporal prediction of photovoltaic (PV) power generation helps the power system dispatching department to make reasonable dispatching plans. In this paper, a robust spatial-temporal prediction mo... 详细信息
来源: 评论
An adaptive spatial-temporal prediction model for landslide displacement based on decomposition architecture
收藏 引用
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2024年 第PartB期137卷
作者: Xu, Man Zhang, Dongmei Li, Jiang Wu, Yiping China Univ Geosci Sch Comp Sci Wuhan 430074 Hubei Peoples R China Minist Educ Engn Res Ctr Nat Resource Informat Management & Di Wuhan 430074 Hubei Peoples R China Informat Ctr Dept Nat Resources Hubei Prov Wuhan 430074 Hubei Peoples R China China Univ Geosci Sch Engn Wuhan 430074 Hubei Peoples R China
Landslide displacement forecasting is a core issue in geohazard research, it is particularly challenging for accumulation-type landslides with complex geological patterns. Traditional landslide displacement prediction... 详细信息
来源: 评论
Adaptive Dual-View WaveNet for urban spatial-temporal event prediction
收藏 引用
INFORMATION SCIENCES 2022年 588卷 315-330页
作者: Jin, Guangyin Liu, Chenxi Xi, Zhexu Sha, Hengyu Liu, Yanyun Huang, Jincai Natl Univ Def Technol Coll Syst Engn Changsha Peoples R China Hunan Univ Coll Comp Sci & Elect Engn Changsha Peoples R China Univ Bristol Bristol Ctr Funct Nanomat Bristol Avon England Harbin Inst Technol Coll Econ & Management Harbin Peoples R China
spatial-temporal event prediction is a particular task for multivariate time series forecasting. Therefore, the complex entangled dynamics of space and time need to be considered. This task is an essential but crucial... 详细信息
来源: 评论
spatial and temporal prediction of radiation dose rates near Fukushima Daiichi Nuclear Power Plant
收藏 引用
JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2022年 251卷 106946页
作者: Sun, Dajie Wainwright, Haruko Suresh, Ishita Seki, Akiyuki Takemiya, Hiroshi Saito, Kimiaki Univ Calif Berkeley Berkeley CA 94720 USA Lawrence Berkeley Natl Lab Berkeley CA USA MIT 77 Massachusetts Ave Cambridge MA 02139 USA Alameda High Sch Lawrence Berkeley Natl Lab Berkeley CA USA Japan Atom Energy Agcy Tokyo Japan
In this paper, we have developed a methodology to estimate the spatiotemporal distribution of radiation air dose rates around the Fukushima Daiichi Nuclear Power Plant (FDNPP). In our exploratory data analysis, we fou... 详细信息
来源: 评论