咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 水利工程
    • 1 篇 环境科学与工程(可...

主题

  • 1 篇 flood classifica...
  • 1 篇 flood simulation
  • 1 篇 machine learning
  • 1 篇 xunhe watershed
  • 1 篇 spatio-temporal ...

机构

  • 1 篇 hohai univ ctr g...
  • 1 篇 hohai univ coll ...
  • 1 篇 china inst water...
  • 1 篇 jiangsu prov eng...

作者

  • 1 篇 zhang xiaoxiang
  • 1 篇 liu changjun
  • 1 篇 cai xi
  • 1 篇 wang zihao
  • 1 篇 yang yongcheng

语言

  • 1 篇 英文
检索条件"主题词=spatio-temporal variable source mixed model"
1 条 记 录,以下是1-10 订阅
排序:
A Novel Flood Classification Method Based on Machine Learning to Improve the Accuracy of Flood Simulation: A Case Study of Xunhe Watershed
收藏 引用
WATER 2025年 第4期17卷 489-489页
作者: Cai, Xi Zhang, Xiaoxiang Liu, Changjun Yang, Yongcheng Wang, Zihao Hohai Univ Coll Geog & Remote Sensing Nanjing 211100 Peoples R China Jiangsu Prov Engn Res Ctr Watershed Geospatial Int Nanjing 211100 Peoples R China Hohai Univ Ctr Geospatial Intelligence & Watershed Sci CGIWaS Nanjing 211100 Peoples R China China Inst Water Resources & Hydropower Res Res Ctr Flood & Drought Disaster Reduct Beijing 100038 Peoples R China
Flood disasters pose one of the greatest threats to humanity. Effectively addressing this challenge requires improving the accuracy of flood simulation. Taking Xunhe watershed in Shandong Province as the study area, t... 详细信息
来源: 评论