咨询与建议

限定检索结果

文献类型

  • 229 篇 期刊文献
  • 93 篇 会议
  • 4 篇 学位论文

馆藏范围

  • 326 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 299 篇 工学
    • 175 篇 计算机科学与技术...
    • 99 篇 电气工程
    • 47 篇 控制科学与工程
    • 43 篇 信息与通信工程
    • 31 篇 仪器科学与技术
    • 26 篇 软件工程
    • 14 篇 机械工程
    • 14 篇 化学工程与技术
    • 13 篇 环境科学与工程(可...
    • 11 篇 测绘科学与技术
    • 10 篇 电子科学与技术(可...
    • 7 篇 材料科学与工程(可...
    • 7 篇 石油与天然气工程
    • 7 篇 生物医学工程(可授...
    • 5 篇 交通运输工程
    • 4 篇 动力工程及工程热...
    • 4 篇 网络空间安全
    • 3 篇 土木工程
  • 63 篇 理学
    • 19 篇 生物学
    • 16 篇 数学
    • 13 篇 地球物理学
    • 12 篇 物理学
    • 11 篇 化学
    • 6 篇 系统科学
    • 3 篇 统计学(可授理学、...
  • 49 篇 管理学
    • 44 篇 管理科学与工程(可...
    • 5 篇 图书情报与档案管...
  • 24 篇 医学
    • 16 篇 临床医学
    • 5 篇 基础医学(可授医学...
  • 5 篇 农学
  • 4 篇 经济学
    • 3 篇 理论经济学
  • 1 篇 法学

主题

  • 326 篇 stacked autoenco...
  • 93 篇 deep learning
  • 27 篇 feature extracti...
  • 22 篇 deep neural netw...
  • 16 篇 classification
  • 14 篇 convolutional ne...
  • 10 篇 fault diagnosis
  • 10 篇 fault detection
  • 9 篇 autoencoder
  • 9 篇 feature learning
  • 8 篇 anomaly detectio...
  • 8 篇 intrusion detect...
  • 8 篇 machine learning
  • 7 篇 long short-term ...
  • 7 篇 soft sensor
  • 6 篇 dimensionality r...
  • 6 篇 neural network
  • 6 篇 extreme learning...
  • 5 篇 deep neural netw...
  • 5 篇 support vector m...

机构

  • 6 篇 cent south univ ...
  • 5 篇 east china univ ...
  • 4 篇 east china univ ...
  • 4 篇 nanjing univ aer...
  • 3 篇 east china univ ...
  • 3 篇 south china univ...
  • 2 篇 shanghai univ en...
  • 2 篇 kunming univ sci...
  • 2 篇 guilin univ elec...
  • 2 篇 kunming univ sci...
  • 2 篇 beijing univ tec...
  • 2 篇 fudan univ sch m...
  • 2 篇 beijing inst rem...
  • 2 篇 department of co...
  • 2 篇 univ ulsan dept ...
  • 2 篇 northeastern uni...
  • 2 篇 north china univ...
  • 2 篇 china univ min &...
  • 2 篇 tongji univ shan...
  • 2 篇 sichuan univ col...

作者

  • 9 篇 yan xuefeng
  • 6 篇 wang kai
  • 4 篇 wang yalin
  • 4 篇 badem hasan
  • 4 篇 basturk alper
  • 4 篇 caliskan abdulla...
  • 4 篇 jiang qingchao
  • 4 篇 yu jianbo
  • 4 篇 yuksel mehmet em...
  • 3 篇 li shunming
  • 3 篇 mitra pabitra
  • 3 篇 nanjundiah ravi ...
  • 3 篇 yuan xiaofeng
  • 3 篇 saha moumita
  • 3 篇 qiao weibiao
  • 3 篇 kai wang
  • 3 篇 aminanto muhamad...
  • 3 篇 yang chunhua
  • 2 篇 huang yuchang
  • 2 篇 han guoqiang

语言

  • 309 篇 英文
  • 13 篇 其他
  • 1 篇 土耳其文
  • 1 篇 中文
检索条件"主题词=stacked Autoencoder"
326 条 记 录,以下是111-120 订阅
排序:
Electricity price forecast based on stacked autoencoder in spot market environment
Electricity price forecast based on stacked autoencoder in s...
收藏 引用
IEEE International Conference on Power and Energy Systems (ICPES)
作者: Ya Zou Mengfu Tu Xianliang Teng Rongzhang Cao Wei Xie Power Grid Dispatching&Control Technology Branch Company NARI TECHNOLOGY DEVELOPMENT CO.LTD Nanjing China NARI RESEARCH INSTITUTE NARI TECHNOLOGY DEVELOPMENT CO.LTD Nanjing China
Artificial neural network method is a common method for short-term electricity price forecasting. However, when the amount of input and output data is large, the training speed will be slow, and it is easy to fall int... 详细信息
来源: 评论
A stacked autoencoder for operation mode classification of complicated industrial process
A stacked autoencoder for operation mode classification of c...
收藏 引用
Chinese Automation Congress (CAC)
作者: Zhou, Longfei Huang, Keke Yang, Chunhua Chen, Xiaofang Xie, Yongfang Yue, Weichao Cent South Univ Sch Software Changsha Hunan Peoples R China Cent South Univ Sch Informat Sci & Engn Changsha Hunan Peoples R China
In this paper, we propose a novel stacked autoencoder (SAE) based operation mode classification method for the complicated industrial process. In detail, we first add the sparse and regularization constraints into SAE... 详细信息
来源: 评论
Virtual Battery Parameter Identification using Transfer Learning based stacked autoencoder  17
Virtual Battery Parameter Identification using Transfer Lear...
收藏 引用
17th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA)
作者: Chakraborty, Indrasis Nandanoori, Sai Pushpak Kundu, Soumya Pacific Northwest Natl Lab Optimizat & Control Grp Richland WA 99354 USA
Recent studies have shown that the aggregated dynamic flexibility of an ensemble of thermostatic loads can be modeled in the form of a virtual battery. The existing methods for computing the virtual battery parameters... 详细信息
来源: 评论
Deep Residual Learning-based Reconstruction of stacked autoencoder Representation  25
Deep Residual Learning-based Reconstruction of Stacked Autoe...
收藏 引用
25th IEEE International Conference on Electronics, Circuits and Systems (ICECS)
作者: Li, Honggui Trocan, Maria Yangzhou Univ Phys Coll Sci & Technol Yangzhou Jiangsu Peoples R China Inst Super Elect Paris LISITE Res Lab Paris France
stacked autoencoder (SAE) can efficiently represent high dimensional data with low dimensional features via minimizing a reconstruction error. However, the decoder of SAE cannot achieve lossless recovery of original d... 详细信息
来源: 评论
Feature learning using stacked autoencoder for Multimodal Fusion, Shared and Cross Learning on Medical Images
Feature learning using Stacked Autoencoder for Multimodal Fu...
收藏 引用
IEEE Bombay Section Signature Conference (IBSSC)
作者: Zeeshan Ul Islam Vikas Singh Nishchal K. Verma Mechanical Engineering Visvesvarya National Institute of Technology Nagpur India Indian Institute of Technology Kanpur India
The analysis of medical images and to find meaningful patterns in it is a cumbersome task, even with the use of techniques of Computer Vision when the dataset is very large. In such a situation deep learning is a hand... 详细信息
来源: 评论
Highway tollgates traffic prediction using a stacked autoencoder neural network
Highway tollgates traffic prediction using a stacked autoenc...
收藏 引用
作者: OSKAR KARRMAN LINNEA OTTERLIND Chalmers University of Technology
学位级别:硕士
Traffic flow prediction is an important area of research with a great number of applications such as route planning and congestion avoidance. This thesis explored artificial neural network performance as travel time a... 详细信息
来源: 评论
δ-agree AdaBoost stacked autoencoder for short-term traffic flow forecasting
收藏 引用
NEUROCOMPUTING 2017年 247卷 31-38页
作者: Zhou, Teng Han, Guoqiang Xu, Xuemiao Lin, Zhizhe Han, Chu Huang, Yuchang Qin, Jing South China Univ Technol Sch Comp Sci & Engn Guangzhou 510006 Guangdong Peoples R China Sun Yat Sen Univ Affiliated Shantou Hosp Shantou 515000 Guangdong Peoples R China Chinese Univ Hong Kong Dept Comp Sci & Engn Hong Kong 999077 Hong Kong Peoples R China South China Agr Univ Coll Math & Informat Guangzhou 510642 Guangdong Peoples R China Hong Kong Polytech Univ Sch Nursing Ctr Smart Hlth Hong Kong 999077 Hong Kong Peoples R China
Accurate and timely traffic flow forecasting is critical for the successful deployment of intelligent transportation systems. However, it is quite challenging to develop an efficient and robust forecasting model due t... 详细信息
来源: 评论
Detection of Double Compressed AMR Audio Using stacked autoencoder
收藏 引用
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 2017年 第2期12卷 432-444页
作者: Luo, Da Yang, Rui Li, Bin Huang, Jiwu Shenzhen Univ Coll Informat Engn Shenzhen 518060 Peoples R China Shenzhen Key Lab Media Secur Shenzhen 518060 Peoples R China Sun Yat Sen Univ Sch Data & Comp Sci Guangzhou 510006 Guangdong Peoples R China
The adaptive multi-rate (AMR) audio codec adopted by many portable recording devices is widely used in speech compression. The use of AMR speech recordings as evidence in court is growing. Nowadays, it is easy to tamp... 详细信息
来源: 评论
Radar HRRP Target Recognition Based on stacked autoencoder and Extreme Learning Machine
收藏 引用
SENSORS 2018年 第1期18卷 173-173页
作者: Zhao, Feixiang Liu, Yongxiang Huo, Kai Zhang, Shuanghui Zhang, Zhongshuai Natl Univ Def Technol Coll Elect Sci Changsha 410073 Hunan Peoples R China
A novel radar high-resolution range profile (HRRP) target recognition method based on a stacked autoencoder (SAE) and extreme learning machine (ELM) is presented in this paper. As a key component of deep structure, th... 详细信息
来源: 评论
Plant classification based on stacked autoencoder  2
Plant classification based on Stacked Autoencoder
收藏 引用
2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC 2017)
作者: Meng-Meng Yang Arifur Nayeem Ling-Ling Shen School of Computer Science and Technology Nanjing Normal University Saidpur Government Technical School And College School of Overseas Education Nanjing University Of Post And Telecommunications School of Business of Nanjing Normal University
With the development of rapid technology, the similarity between plants is increasing, which will enhance the classified workload of botanists. Therefore, it is urge to find a quick automatic classification method. In... 详细信息
来源: 评论