咨询与建议

限定检索结果

文献类型

  • 229 篇 期刊文献
  • 93 篇 会议
  • 4 篇 学位论文

馆藏范围

  • 326 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 298 篇 工学
    • 175 篇 计算机科学与技术...
    • 99 篇 电气工程
    • 47 篇 控制科学与工程
    • 43 篇 信息与通信工程
    • 31 篇 仪器科学与技术
    • 26 篇 软件工程
    • 14 篇 机械工程
    • 14 篇 化学工程与技术
    • 13 篇 环境科学与工程(可...
    • 11 篇 测绘科学与技术
    • 10 篇 电子科学与技术(可...
    • 7 篇 材料科学与工程(可...
    • 7 篇 石油与天然气工程
    • 7 篇 生物医学工程(可授...
    • 5 篇 交通运输工程
    • 4 篇 动力工程及工程热...
    • 4 篇 网络空间安全
    • 3 篇 土木工程
  • 63 篇 理学
    • 19 篇 生物学
    • 16 篇 数学
    • 13 篇 地球物理学
    • 12 篇 物理学
    • 11 篇 化学
    • 6 篇 系统科学
    • 3 篇 统计学(可授理学、...
  • 48 篇 管理学
    • 43 篇 管理科学与工程(可...
    • 5 篇 图书情报与档案管...
  • 24 篇 医学
    • 16 篇 临床医学
    • 5 篇 基础医学(可授医学...
  • 5 篇 农学
  • 4 篇 经济学
    • 3 篇 理论经济学
  • 1 篇 法学

主题

  • 326 篇 stacked autoenco...
  • 93 篇 deep learning
  • 27 篇 feature extracti...
  • 22 篇 deep neural netw...
  • 16 篇 classification
  • 14 篇 convolutional ne...
  • 10 篇 fault diagnosis
  • 10 篇 fault detection
  • 9 篇 autoencoder
  • 9 篇 feature learning
  • 8 篇 anomaly detectio...
  • 8 篇 intrusion detect...
  • 8 篇 machine learning
  • 7 篇 long short-term ...
  • 7 篇 soft sensor
  • 6 篇 dimensionality r...
  • 6 篇 neural network
  • 6 篇 extreme learning...
  • 5 篇 deep neural netw...
  • 5 篇 support vector m...

机构

  • 6 篇 cent south univ ...
  • 5 篇 east china univ ...
  • 4 篇 east china univ ...
  • 4 篇 nanjing univ aer...
  • 3 篇 east china univ ...
  • 3 篇 south china univ...
  • 2 篇 shanghai univ en...
  • 2 篇 kunming univ sci...
  • 2 篇 guilin univ elec...
  • 2 篇 kunming univ sci...
  • 2 篇 beijing univ tec...
  • 2 篇 fudan univ sch m...
  • 2 篇 beijing inst rem...
  • 2 篇 department of co...
  • 2 篇 univ ulsan dept ...
  • 2 篇 northeastern uni...
  • 2 篇 north china univ...
  • 2 篇 china univ min &...
  • 2 篇 tongji univ shan...
  • 2 篇 sichuan univ col...

作者

  • 9 篇 yan xuefeng
  • 6 篇 wang kai
  • 4 篇 wang yalin
  • 4 篇 badem hasan
  • 4 篇 basturk alper
  • 4 篇 caliskan abdulla...
  • 4 篇 jiang qingchao
  • 4 篇 yu jianbo
  • 4 篇 yuksel mehmet em...
  • 3 篇 li shunming
  • 3 篇 mitra pabitra
  • 3 篇 nanjundiah ravi ...
  • 3 篇 yuan xiaofeng
  • 3 篇 saha moumita
  • 3 篇 qiao weibiao
  • 3 篇 kai wang
  • 3 篇 aminanto muhamad...
  • 3 篇 yang chunhua
  • 2 篇 huang yuchang
  • 2 篇 han guoqiang

语言

  • 309 篇 英文
  • 13 篇 其他
  • 1 篇 土耳其文
  • 1 篇 中文
检索条件"主题词=stacked Autoencoder"
326 条 记 录,以下是221-230 订阅
排序:
Intelligent Anomaly Detection Method of Gateway Electrical Energy Metering Devices using Deep Learning
收藏 引用
INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS 2023年 第7期14卷 859-867页
作者: Zhang, Lihua Chen, Xu Zhang, Chao Zhang, Lingxuan Zou, Binghang State Grid Ningxia Elect Power Co Ltd Mkt Serv Ctr Metrol Ctr Yinchuan Peoples R China Sichuan Univ Coll Elect Engn Chengdu Peoples R China
anomaly detection of gateway electrical energy metering device is important for maintenance and operations in the power systems. Traditionally, anomaly detection was typically performed manually through the analysis o... 详细信息
来源: 评论
A Deep-Learning-Based Health Indicator Constructor Using Kullback-Leibler Divergence for Predicting the Remaining Useful Life of Concrete Structures
收藏 引用
SENSORS 2022年 第10期22卷 3687-3687页
作者: Nguyen, Tuan-Khai Ahmad, Zahoor Kim, Jong-Myon Univ Ulsan Dept Elect Elect & Comp Engn Ulsan 44610 South Korea
This paper proposes a new technique for the construction of a concrete-beam health indicator based on the Kullback-Leibler divergence (KLD) and deep learning. Health indicator (HI) construction is a vital part of rema... 详细信息
来源: 评论
Ranked Dropout for Handwritten Digit Recognition  12
Ranked Dropout for Handwritten Digit Recognition
收藏 引用
12th International Conference on Graphics and Image Processing (ICGIP)
作者: Tang, Yue Liang, Zhuonan Shi, Huaze Fu, Peng Sun, Quansen Nanjing Univ Sci & Technol Nanjing Peoples R China
Overfitting is a common problem in training of neural network with small training sets, which leads to worse performance on the new samples. Dropout has been proved to be an effective method to avoid overfitting, whic... 详细信息
来源: 评论
An Ensemble Learning Method for Emotion Charting Using Multimodal Physiological Signals
收藏 引用
SENSORS 2022年 第23期22卷 9480-9480页
作者: Awan, Amna Waheed Usman, Syed Muhammad Khalid, Shehzad Anwar, Aamir Alroobaea, Roobaea Hussain, Saddam Almotiri, Jasem Ullah, Syed Sajid Akram, Muhammad Usman Bahria Univ Dept Comp Engn Islamabad 44000 Pakistan Air Univ Fac Comp & AI Dept Creat Technol Islamabad 44000 Pakistan Univ West London Sch Comp & Engn London W5 5RF England Taif Univ Coll Comp & Informat Technol Dept Comp Sci POB 11099 Taif 21944 Saudi Arabia Univ Brunei Darussalam Sch Digital Sci Jalan Tungku Link Gadong BE1410 Brunei Univ Agder UiA Dept Informat & Commun Technol N-4898 Grimstad Norway Villanova Univ Dept Elect & Comp Engn Villanova PA 19085 USA Natl Univ Sci & Technol NUST Coll Eletr & Mech Engn E & ME Islamabad 44000 Pakistan
Emotion charting using multimodal signals has gained great demand for stroke-affected patients, for psychiatrists while examining patients, and for neuromarketing applications. Multimodal signals for emotion charting ... 详细信息
来源: 评论
Dynamic historical information incorporated attention deep learning model for industrial soft sensor modeling
收藏 引用
ADVANCED ENGINEERING INFORMATICS 2022年 52卷
作者: Wang, Yalin Liu, Diju Liu, Chenliang Yuan, Xiaofeng Wang, Kai Yang, Chunhua Cent South Univ Sch Automat Changsha 410083 Hunan Peoples R China
Due to the limitations of sampling conditions and sampling techniques in many real industrial processes, the process data under different sampling conditions subject to different sampling frequencies, which leads to i... 详细信息
来源: 评论
Deep learning technique for process fault detection and diagnosis in the presence of incomplete data
收藏 引用
Chinese Journal of Chemical Engineering 2020年 第9期28卷 2358-2367页
作者: Cen Guo Wenkai Hu Fan Yang Dexian Huang Department of Automation Tsinghua UniversityBeijing 10084China Cornell University NY 14850United States of America University of Alberta EdmontonAB T6G 1H9Canada
In modern industrial processes, timely detection and diagnosis of process abnormalities are critical for monitoring process operations. Various fault detection and diagnosis(FDD) methods have been proposed and impleme... 详细信息
来源: 评论
An extreme rainfall-induced landslide susceptibility assessment using autoencoder combined with random forest in Shimane Prefecture, Japan
收藏 引用
GEOENVIRONMENTAL DISASTERS 2020年 第1期7卷 1-16页
作者: Nam, Kounghoon Wang, Fawu Shimane Univ Dept Earth Sci 1060 Nishikawatsu Cho Matsue Shimane 6908504 Japan
BackgroundLandslide-affecting factors are uncorrelated or non-linearly correlated, limiting the predictive performance of traditional machine learning methods for landslide susceptibility assessment. Deep learning met... 详细信息
来源: 评论
Bankruptcy Prediction Using Deep Learning Approach Based on Borderline SMOTE
收藏 引用
INFORMATION SYSTEMS FRONTIERS 2020年 第5期22卷 1067-1083页
作者: Smiti, Salima Soui, Makram Univ Manouba Natl Sch Comp Sci Manouba Tunisia Saudi Elect Univ Coll Comp & Informat Riyadh Saudi Arabia
Imbalanced classification on bankruptcy prediction is considered as one of the most important topics in financial institutions. In this context, various statistical and artificial intelligence methods have been propos... 详细信息
来源: 评论
Multifaceted radiomics for distant metastasis prediction in head & neck cancer
收藏 引用
PHYSICS IN MEDICINE AND BIOLOGY 2020年 第15期65卷 155009-155009页
作者: Zhou, Zhiguo Wang, Kai Folkert, Michael Liu, Hui Jiang, Steve Sher, David Wang, Jing Univ Texas Southwestern Med Ctr Dallas Dept Radiat Oncol Dallas TX 75390 USA Univ Cent Missouri Sch Comp Sci & Math Warrensburg MO USA
Accurately predicting distant metastasis in head & neck cancer has the potential to improve patient survival by allowing early treatment intensification with systemic therapy for high-risk patients. By extracting ... 详细信息
来源: 评论
Semi-Supervised Learning Algorithm for Identifying High-Priority Drug-Drug Interactions Through Adverse Event Reports
收藏 引用
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 2020年 第1期24卷 57-68页
作者: Liu, Ning Chen, Cheng-Bang Kumara, Soundar Penn State Univ Dept Ind & Mfg Engn University Pk PA 16802 USA
Identifying drug-drug interactions (DDIs) is a critical enabler for reducing adverse drug events and improving patient safety. Generating proper DDI alerts during prescribing workflow has the potential to prevent DDI-... 详细信息
来源: 评论