咨询与建议

限定检索结果

文献类型

  • 229 篇 期刊文献
  • 93 篇 会议
  • 4 篇 学位论文

馆藏范围

  • 326 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 299 篇 工学
    • 175 篇 计算机科学与技术...
    • 99 篇 电气工程
    • 47 篇 控制科学与工程
    • 43 篇 信息与通信工程
    • 31 篇 仪器科学与技术
    • 26 篇 软件工程
    • 14 篇 机械工程
    • 14 篇 化学工程与技术
    • 13 篇 环境科学与工程(可...
    • 11 篇 测绘科学与技术
    • 10 篇 电子科学与技术(可...
    • 7 篇 材料科学与工程(可...
    • 7 篇 石油与天然气工程
    • 7 篇 生物医学工程(可授...
    • 5 篇 交通运输工程
    • 4 篇 动力工程及工程热...
    • 4 篇 网络空间安全
    • 3 篇 土木工程
  • 63 篇 理学
    • 19 篇 生物学
    • 16 篇 数学
    • 13 篇 地球物理学
    • 12 篇 物理学
    • 11 篇 化学
    • 6 篇 系统科学
    • 3 篇 统计学(可授理学、...
  • 49 篇 管理学
    • 44 篇 管理科学与工程(可...
    • 5 篇 图书情报与档案管...
  • 24 篇 医学
    • 16 篇 临床医学
    • 5 篇 基础医学(可授医学...
  • 5 篇 农学
  • 4 篇 经济学
    • 3 篇 理论经济学
  • 1 篇 法学

主题

  • 326 篇 stacked autoenco...
  • 93 篇 deep learning
  • 27 篇 feature extracti...
  • 22 篇 deep neural netw...
  • 16 篇 classification
  • 14 篇 convolutional ne...
  • 10 篇 fault diagnosis
  • 10 篇 fault detection
  • 9 篇 autoencoder
  • 9 篇 feature learning
  • 8 篇 anomaly detectio...
  • 8 篇 intrusion detect...
  • 8 篇 machine learning
  • 7 篇 long short-term ...
  • 7 篇 soft sensor
  • 6 篇 dimensionality r...
  • 6 篇 neural network
  • 6 篇 extreme learning...
  • 5 篇 deep neural netw...
  • 5 篇 support vector m...

机构

  • 6 篇 cent south univ ...
  • 5 篇 east china univ ...
  • 4 篇 east china univ ...
  • 4 篇 nanjing univ aer...
  • 3 篇 east china univ ...
  • 3 篇 south china univ...
  • 2 篇 shanghai univ en...
  • 2 篇 kunming univ sci...
  • 2 篇 guilin univ elec...
  • 2 篇 kunming univ sci...
  • 2 篇 beijing univ tec...
  • 2 篇 fudan univ sch m...
  • 2 篇 beijing inst rem...
  • 2 篇 department of co...
  • 2 篇 univ ulsan dept ...
  • 2 篇 northeastern uni...
  • 2 篇 north china univ...
  • 2 篇 china univ min &...
  • 2 篇 tongji univ shan...
  • 2 篇 sichuan univ col...

作者

  • 9 篇 yan xuefeng
  • 6 篇 wang kai
  • 4 篇 wang yalin
  • 4 篇 badem hasan
  • 4 篇 basturk alper
  • 4 篇 caliskan abdulla...
  • 4 篇 jiang qingchao
  • 4 篇 yu jianbo
  • 4 篇 yuksel mehmet em...
  • 3 篇 li shunming
  • 3 篇 mitra pabitra
  • 3 篇 nanjundiah ravi ...
  • 3 篇 yuan xiaofeng
  • 3 篇 saha moumita
  • 3 篇 qiao weibiao
  • 3 篇 kai wang
  • 3 篇 aminanto muhamad...
  • 3 篇 yang chunhua
  • 2 篇 huang yuchang
  • 2 篇 han guoqiang

语言

  • 309 篇 英文
  • 13 篇 其他
  • 1 篇 土耳其文
  • 1 篇 中文
检索条件"主题词=stacked Autoencoder"
326 条 记 录,以下是271-280 订阅
Novel PV Fault Diagnoses via SAE and Improved Multi-Grained Cascade Forest With String Voltage and Currents Measures
收藏 引用
IEEE ACCESS 2020年 8卷 133144-133160页
作者: Gao, Wei Wai, Rong-Jong Chen, Shi-Qun Natl Taiwan Univ Sci & Technol Dept Elect & Comp Engn Taipei 106 Taiwan Fuzhou Univ Coll Elect Engn & Automat Fuzhou 350108 Peoples R China
The precision of conventional PV fault diagnostic methods faces challenges due to the nonlinear output power characteristics of photovoltaic (PV) arrays and the implementation of the maximum power point tracking (MPPT... 详细信息
来源: 评论
stacked Auto-Encoder for Scalable Indoor Localization in Wireless Sensor Networks  15
Stacked Auto-Encoder for Scalable Indoor Localization in Wir...
收藏 引用
15th IEEE International Wireless Communications and Mobile Computing Conference (IEEE IWCMC)
作者: BelMannoubi, Souad Touati, Haifa Snoussi, Hichem Univ Gabes Fac Sci Gabes Hatem Bettaher IResCoMath Res Unit Gabes Tunisia Univ Technol Troyes CNRS FRE 2848 ICD Troyes France
In this paper, we propose a Deep Neural Network model based on WiFi-fingerprinting to improve the accuracy of zone location in a multi-building, multi-floor indoor environment. The proposed model is presented as a Sta... 详细信息
来源: 评论
Improve Traffic Prediction Using Accident Embedding on Ensemble Deep Neural Networks  11
Improve Traffic Prediction Using Accident Embedding on Ensem...
收藏 引用
11th Annual International Conference on Knowledge and Smart Technology (KST)
作者: Liyong, Wanida Vateekul, Peerapon Chulalongkorn Univ Fac Engn Dept Comp Engn Big Data Analyt & IoT Ctr CUBIC Bangkok Thailand
Traffic Prediction in a large-scale network has become an important topic of an intelligent transportation system (ITS). The problem is challenging due to various nonlinear temporal and difficulty for longer-step ahea... 详细信息
来源: 评论
An unsupervised anomaly detection approach based on industrial big data  2
An unsupervised anomaly detection approach based on industri...
收藏 引用
2nd World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM)
作者: Zhang, Cong Zhu, Yongsheng Ren, Zhijun Chen, Kaida Xi An Jiao Tong Univ Key Lab Educ Minist Modern Design & RotorBearing Xian Peoples R China
The development of condition monitoring system provides large amounts of operational data. These data present typical characteristics of multiple sources, polymorphism, diversity and mass, and can reflect the service ... 详细信息
来源: 评论
A Deep Learning Framework to Predict Rating for Cold Start Item Using Item Metadata  28
A Deep Learning Framework to Predict Rating for Cold Start I...
收藏 引用
28th IEEE International Conference on Enabling Technologies - Infrastructure for Collaborative Enterprises (WETICE)
作者: Anwaar, Fahad Iltaf, Naima Afzal, Hammad Abbas, Haider Natl Univ Sci & Technol NUST Mil Coll Signals Islamabad Pakistan
Recommender systems improve browsing experience of users for large amount of items by assisting selection and classification of items utilizing item metadata. The performance of recommender system usually deteriorates... 详细信息
来源: 评论
Deep Learning in Indoor Localization Using WiFi  1st
Deep Learning in Indoor Localization Using WiFi
收藏 引用
1st International Telecommunications Conference (ITelCon)
作者: Turgut, Zeynep Ustebay, Serpil Aydin, Gulsum Zeynep Gurkas Sertbas, Ahmet Halic Univ Istanbul Turkey Istanbul Univ Istanbul Turkey
In this study, the indoor localization was performed on indoor networks. WiFi technology is located in almost every building. For this reason, WiFi technology has been selected to perform positioning, and RSSI values ... 详细信息
来源: 评论
The Comparison of deep learning recognition methods based on SAR image
The Comparison of deep learning recognition methods based on...
收藏 引用
IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC)
作者: Zhai, Jia Zhu, Sha Chen, Feng Xie, Xiaodan Zhu, Yong Yin, Hongcheng Sci & Technol Electromagnet Scattering Lab Beijing Peoples R China Beijing Inst Remote Sensing Informat Beijing Peoples R China Sci & Technol Opt Radiat Lab Beijing Peoples R China
Aiming at the problem of Synthetic Aperture Radar (SAR) target recognition, a new deep learning method is proposed. The stacked Auto Encoder (SAE) network and the convolutional Neural Network (CNN) have remarkable per... 详细信息
来源: 评论
Combating Threat-Alert Fatigue with Online Anomaly Detection Using Isolation Forest  26th
Combating Threat-Alert Fatigue with Online Anomaly Detection...
收藏 引用
26th International Conference on Neural Information Processing (ICONIP) of the Asia-Pacific-Neural-Network-Society (APNNS)
作者: Aminanto, Muhamad Erza Zhu, Lei Ban, Tao Isawa, Ryoichi Takahashi, Takeshi Inoue, Daisuke Natl Inst Informat & Commun Technol Tokyo Japan Lingnan Normal Univ Zhanjiang Peoples R China
The threat-alert fatigue problem, which is the inability of security operators to genuinely investigate each alert coming from network-based intrusion detection systems, causes many unexplored alerts and hence a deter... 详细信息
来源: 评论
HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON stacked MARGINAL DISCRIMINATIVE autoencoder  37
HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON STACKED MARGINAL...
收藏 引用
IEEE International Geoscience & Remote Sensing Symposium
作者: Feng, Jie Liu, Liguo Zhang, Xiangrong Wang, Rongfang Liu, Hongying Xidian Univ Key Lab Intelligent Percept & Image Undersatnding Minist Educ Xian 710071 Shaanxi Peoples R China
In this paper, a novel stacked marginal discriminative autoencoder (SMDAE) method is proposed for hyperspectral image classification. It uses a deep neural network to learn discriminative features from hyperspectral i... 详细信息
来源: 评论
SAE-based classification of school-aged children with autism spectrum disorders using functional magnetic resonance imaging
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2018年 第17期77卷 22809-22820页
作者: Xiao, Zhiyong Wang, Canhua Jia, Nan Wu, Jianhua Nanchang Univ Sch Mechatron Engn Nanchang 330031 Jiangxi Peoples R China Jiangxi Agr Univ Sch Software Nanchang 330045 Jiangxi Peoples R China Jiangxi Univ Tradit Chinese Med Sch Comp Nanchang 330004 Jiangxi Peoples R China Nanchang Univ Sch Informat Engn Nanchang 330031 Jiangxi Peoples R China
This paper employs a novel-deep learning method and brain frequencies to discriminate school-aged children with autism spectrum disorders (ASD) from typically developing (TD) school-aged children with functional magne... 详细信息
来源: 评论