咨询与建议

限定检索结果

文献类型

  • 230 篇 期刊文献
  • 93 篇 会议
  • 4 篇 学位论文

馆藏范围

  • 327 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 299 篇 工学
    • 176 篇 计算机科学与技术...
    • 100 篇 电气工程
    • 47 篇 控制科学与工程
    • 44 篇 信息与通信工程
    • 31 篇 仪器科学与技术
    • 26 篇 软件工程
    • 14 篇 机械工程
    • 14 篇 化学工程与技术
    • 13 篇 环境科学与工程(可...
    • 11 篇 测绘科学与技术
    • 10 篇 电子科学与技术(可...
    • 8 篇 材料科学与工程(可...
    • 7 篇 石油与天然气工程
    • 7 篇 生物医学工程(可授...
    • 5 篇 交通运输工程
    • 4 篇 动力工程及工程热...
    • 4 篇 网络空间安全
    • 3 篇 土木工程
  • 64 篇 理学
    • 19 篇 生物学
    • 16 篇 数学
    • 13 篇 物理学
    • 13 篇 地球物理学
    • 11 篇 化学
    • 6 篇 系统科学
    • 3 篇 统计学(可授理学、...
  • 48 篇 管理学
    • 43 篇 管理科学与工程(可...
    • 5 篇 图书情报与档案管...
  • 24 篇 医学
    • 16 篇 临床医学
    • 5 篇 基础医学(可授医学...
  • 5 篇 农学
  • 4 篇 经济学
    • 3 篇 理论经济学
  • 1 篇 法学

主题

  • 327 篇 stacked autoenco...
  • 94 篇 deep learning
  • 27 篇 feature extracti...
  • 22 篇 deep neural netw...
  • 16 篇 classification
  • 14 篇 convolutional ne...
  • 10 篇 fault diagnosis
  • 10 篇 fault detection
  • 9 篇 autoencoder
  • 9 篇 feature learning
  • 8 篇 anomaly detectio...
  • 8 篇 intrusion detect...
  • 8 篇 machine learning
  • 7 篇 long short-term ...
  • 7 篇 soft sensor
  • 6 篇 dimensionality r...
  • 6 篇 neural network
  • 6 篇 extreme learning...
  • 5 篇 deep neural netw...
  • 5 篇 support vector m...

机构

  • 6 篇 cent south univ ...
  • 5 篇 east china univ ...
  • 4 篇 east china univ ...
  • 4 篇 nanjing univ aer...
  • 3 篇 east china univ ...
  • 3 篇 south china univ...
  • 2 篇 shanghai univ en...
  • 2 篇 kunming univ sci...
  • 2 篇 guilin univ elec...
  • 2 篇 kunming univ sci...
  • 2 篇 beijing univ tec...
  • 2 篇 fudan univ sch m...
  • 2 篇 beijing inst rem...
  • 2 篇 department of co...
  • 2 篇 univ ulsan dept ...
  • 2 篇 northeastern uni...
  • 2 篇 north china univ...
  • 2 篇 china univ min &...
  • 2 篇 tongji univ shan...
  • 2 篇 sichuan univ col...

作者

  • 9 篇 yan xuefeng
  • 6 篇 wang kai
  • 4 篇 wang yalin
  • 4 篇 badem hasan
  • 4 篇 basturk alper
  • 4 篇 caliskan abdulla...
  • 4 篇 jiang qingchao
  • 4 篇 yu jianbo
  • 4 篇 yuksel mehmet em...
  • 3 篇 li shunming
  • 3 篇 mitra pabitra
  • 3 篇 nanjundiah ravi ...
  • 3 篇 yuan xiaofeng
  • 3 篇 saha moumita
  • 3 篇 qiao weibiao
  • 3 篇 kai wang
  • 3 篇 aminanto muhamad...
  • 3 篇 yang chunhua
  • 2 篇 huang yuchang
  • 2 篇 han guoqiang

语言

  • 310 篇 英文
  • 13 篇 其他
  • 1 篇 土耳其文
  • 1 篇 中文
检索条件"主题词=stacked Autoencoder"
327 条 记 录,以下是321-330 订阅
排序:
Deep learning approach for EEG compression in mHealth system  13
Deep learning approach for EEG compression in mHealth system
收藏 引用
13th International Wireless Communications and Mobile Computing Conference (IWCMC)
作者: Ben Said, Ahmed Mohamed, Amr Elfouly, Tarek Qatar Univ Comp Sci & Engn Dept Doha 2713 Qatar
The emergence of mobile health (mHealth) systems has risen the challenges and concerns due to the sensitivity of the data involved in such systems. It is essential to ensure that these data are well delivered to the h... 详细信息
来源: 评论
Intelligent Anomaly Detection Method of Gateway Electrical Energy Metering Devices using Deep Learning
收藏 引用
INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS 2023年 第7期14卷 859-867页
作者: Zhang, Lihua Chen, Xu Zhang, Chao Zhang, Lingxuan Zou, Binghang State Grid Ningxia Elect Power Co Ltd Mkt Serv Ctr Metrol Ctr Yinchuan Peoples R China Sichuan Univ Coll Elect Engn Chengdu Peoples R China
anomaly detection of gateway electrical energy metering device is important for maintenance and operations in the power systems. Traditionally, anomaly detection was typically performed manually through the analysis o... 详细信息
来源: 评论
A Hybrid Deep Learning Approach for Advanced Persistent Threat Attack Detection  2021
A Hybrid Deep Learning Approach for Advanced Persistent Thre...
收藏 引用
The 5th International Conference on Future Networks & Distributed Systems
作者: Meaad Alrehaili Adel Alshamrani Ala Eshmawi University of Jeddah Saudi Arabia
Advanced Persistent Threat (APT) attack is one of the most common and costly destructive attacks on the target system. This attack has become a challenge for companies, governments, and organizations’ information sec... 详细信息
来源: 评论
A Deep Learning Technique for Process Fault Detection and Diagnosis in the Presence of Incomplete Data
A Deep Learning Technique for Process Fault Detection and Di...
收藏 引用
第30届中国过程控制会议(CPCC 2019)
作者: Cen Guo Wenkai Hu Fan Yang Dexian Huang Cornell University University of Alberta Department of Automation Tsinghua University
In modern industrial processes, timely detection and diagnosis of process abnormalities are critical for monitoring process *** fault detection and diagnosis(FDD) methods have been proposed and implemented, the perfor... 详细信息
来源: 评论
DL-PRO: A Novel Deep Learning Method for Protein Model Quality Assessment
DL-PRO: A Novel Deep Learning Method for Protein Model Quali...
收藏 引用
International Joint Conference on Neural Networks
作者: Son P. Nguyen Yi Shang Dong Xu Department of Computer Science University of Missouri
Computational protein structure prediction is very important for many applications in bioinformatics. In the process of predicting protein structures, it is essential to accurately assess the quality of generated mode... 详细信息
来源: 评论
An effective feature extraction method for fault classification and its application to industrial processes
An effective feature extraction method for fault classificat...
收藏 引用
第33届中国过程控制会议
作者: Adil Masud Aman Yalin Wang Chenliang Liu Xiaofeng Yuan Kai Wang Lixue Huang the School of Automation Central South University the Xinjiang Luobupo Potassium Salt Co.Ltd
Since industrial process data often presents complexity and nonlinearity,this study proposes a deep learning model based on semi-supervised Inter-Relational Mahalanobis stacked autoencoder(IRM-SAE) to learn deep fault... 详细信息
来源: 评论
A spatial temporal neighborhood preserving method for feature learning with an industrial application
A spatial temporal neighborhood preserving method for featur...
收藏 引用
第32届中国过程控制会议(CPCC2021)
作者: Chenliang Liu Yalin Wang Kai Wang Xiaofeng Yuan School of Automation Central South University
Modern industrial process data often exhibit nonlinear and dynamic *** deep learning methods,such as stacked autoencoder(SAE),have excellent nonlinear feature learning capabilities,but they ignore the dynamic correlat... 详细信息
来源: 评论