咨询与建议

限定检索结果

文献类型

  • 229 篇 期刊文献
  • 93 篇 会议
  • 4 篇 学位论文

馆藏范围

  • 326 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 298 篇 工学
    • 175 篇 计算机科学与技术...
    • 99 篇 电气工程
    • 47 篇 控制科学与工程
    • 43 篇 信息与通信工程
    • 31 篇 仪器科学与技术
    • 26 篇 软件工程
    • 14 篇 机械工程
    • 14 篇 化学工程与技术
    • 13 篇 环境科学与工程(可...
    • 11 篇 测绘科学与技术
    • 10 篇 电子科学与技术(可...
    • 7 篇 材料科学与工程(可...
    • 7 篇 石油与天然气工程
    • 7 篇 生物医学工程(可授...
    • 5 篇 交通运输工程
    • 4 篇 动力工程及工程热...
    • 4 篇 网络空间安全
    • 3 篇 土木工程
  • 63 篇 理学
    • 19 篇 生物学
    • 16 篇 数学
    • 13 篇 地球物理学
    • 12 篇 物理学
    • 11 篇 化学
    • 6 篇 系统科学
    • 3 篇 统计学(可授理学、...
  • 48 篇 管理学
    • 43 篇 管理科学与工程(可...
    • 5 篇 图书情报与档案管...
  • 24 篇 医学
    • 16 篇 临床医学
    • 5 篇 基础医学(可授医学...
  • 5 篇 农学
  • 4 篇 经济学
    • 3 篇 理论经济学
  • 1 篇 法学

主题

  • 326 篇 stacked autoenco...
  • 93 篇 deep learning
  • 27 篇 feature extracti...
  • 22 篇 deep neural netw...
  • 16 篇 classification
  • 14 篇 convolutional ne...
  • 10 篇 fault diagnosis
  • 10 篇 fault detection
  • 9 篇 autoencoder
  • 9 篇 feature learning
  • 8 篇 anomaly detectio...
  • 8 篇 intrusion detect...
  • 8 篇 machine learning
  • 7 篇 long short-term ...
  • 7 篇 soft sensor
  • 6 篇 dimensionality r...
  • 6 篇 neural network
  • 6 篇 extreme learning...
  • 5 篇 deep neural netw...
  • 5 篇 support vector m...

机构

  • 6 篇 cent south univ ...
  • 5 篇 east china univ ...
  • 4 篇 east china univ ...
  • 4 篇 nanjing univ aer...
  • 3 篇 east china univ ...
  • 3 篇 south china univ...
  • 2 篇 shanghai univ en...
  • 2 篇 kunming univ sci...
  • 2 篇 guilin univ elec...
  • 2 篇 kunming univ sci...
  • 2 篇 beijing univ tec...
  • 2 篇 fudan univ sch m...
  • 2 篇 beijing inst rem...
  • 2 篇 department of co...
  • 2 篇 univ ulsan dept ...
  • 2 篇 northeastern uni...
  • 2 篇 north china univ...
  • 2 篇 china univ min &...
  • 2 篇 tongji univ shan...
  • 2 篇 sichuan univ col...

作者

  • 9 篇 yan xuefeng
  • 6 篇 wang kai
  • 4 篇 wang yalin
  • 4 篇 badem hasan
  • 4 篇 basturk alper
  • 4 篇 caliskan abdulla...
  • 4 篇 jiang qingchao
  • 4 篇 yu jianbo
  • 4 篇 yuksel mehmet em...
  • 3 篇 li shunming
  • 3 篇 mitra pabitra
  • 3 篇 nanjundiah ravi ...
  • 3 篇 yuan xiaofeng
  • 3 篇 saha moumita
  • 3 篇 qiao weibiao
  • 3 篇 kai wang
  • 3 篇 aminanto muhamad...
  • 3 篇 yang chunhua
  • 2 篇 huang yuchang
  • 2 篇 han guoqiang

语言

  • 309 篇 英文
  • 13 篇 其他
  • 1 篇 土耳其文
  • 1 篇 中文
检索条件"主题词=stacked autoencoder"
326 条 记 录,以下是291-300 订阅
排序:
Data-driven inverse modeling with a pre-trained neural network at heterogeneous channel reservoirs
收藏 引用
JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING 2018年 170卷 785-796页
作者: Ahn, Seongin Park, Changhyup Kim, Jaejun Kang, Joe M. Samsung Heavy Ind Dept Energy Plant Researching Seongnam 13486 Gyeonggi South Korea Kangwon Natl Univ Dept Energy & Resources Engn Chunchon 24341 Kangwon South Korea Seoul Natl Univ Dept Energy Syst Engn Seoul 08826 South Korea
This paper develops a reliable and efficient data-integration method, based on artificial neural networks (ANN) incorporated with a stacked autoencoder (SAE) in a deep neural network's framework. To handle scale-d... 详细信息
来源: 评论
Deep Learning Technique-Based Steering of Autonomous Car
收藏 引用
INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS 2018年 第2期17卷
作者: Yang, Yiqin Wu, Zhe Xu, Qingyang Yan, Fabao Shandong Univ Sch Mech Elect & Informat Engn 180 Wenhua Xilu Weihai 264209 Shandong Peoples R China
Deep neural network (DNN) has many advantages. Autonomous driving has become a popular topic now. In this paper, an improved stack autoencoder based on the deep learning techniques is proposed to learn the driving cha... 详细信息
来源: 评论
stacked autoencoders Using Low-Power Accelerated Architectures for Object Recognition in Autonomous Systems
收藏 引用
NEURAL PROCESSING LETTERS 2016年 第2期43卷 445-458页
作者: Maria, Joao Amaro, Joao Falcao, Gabriel Alexandre, Luis A. Univ Coimbra Inst Telecomunicacoes Dept Elect & Comp Engn P-3030290 Coimbra Portugal Univ Beira Interior Dept Informat P-6201001 Covilha Portugal Univ Beira Interior Inst Telecomunicacoes P-6201001 Covilha Portugal
This paper investigates low-energy consumption and low-power hardware models and processor architectures for performing the real-time recognition of objects in power-constrained autonomous systems and robots. Most rec... 详细信息
来源: 评论
WiFi-Sensing Based Person-to-Person Distance Estimation Using Deep Learning  24
WiFi-Sensing Based Person-to-Person Distance Estimation Usin...
收藏 引用
24th IEEE International Conference on Parallel and Distributed Systems (ICPADS)
作者: Liu, Wenping Jia, Yufu Jiang, Guoyin Jiang, Hongbo Wu, Fan Lv, Zhicheng Hubei Univ Econ Sch IMS Wuhan Hubei Peoples R China Hunan Univ Coll CSEE Changsha Hunan Peoples R China Univ Elect Sci & Tech China Sch PA Chengdu Sichuan Peoples R China Huazhong Univ Sci & Technol Sch EIC Wuhan Hubei Peoples R China Hubei Univ Econ Sch IE Wuhan Hubei Peoples R China
Accurately estimating the distance between persons with COTS mobile devices can benefit many applications (e.g., group activity analysis, indoor navigation, etc.). In this paper we present WiDE, a deep learning-based ... 详细信息
来源: 评论
A Deep Learning Technique for Process Fault Detection and Diagnosis in the Presence of Incomplete Data
A Deep Learning Technique for Process Fault Detection and Di...
收藏 引用
第30届中国过程控制会议(CPCC 2019)
作者: Cen Guo Wenkai Hu Fan Yang Dexian Huang Cornell University University of Alberta Department of Automation Tsinghua University
In modern industrial processes, timely detection and diagnosis of process abnormalities are critical for monitoring process *** fault detection and diagnosis(FDD) methods have been proposed and implemented, the perfor... 详细信息
来源: 评论
An Empirical Study on Unsupervised Pre-training Approaches in Regression Problems  8
An Empirical Study on Unsupervised Pre-training Approaches i...
收藏 引用
8th IEEE Symposium Series on Computational Intelligence (IEEE SSCI)
作者: Saikia, Pallabi Baruah, Rashmi Dutta Indian Inst Technol Guwahati Comp Sci & Engn Dept Gauhati India
Unsupervised pre-training allows for efficient training of deep architectures. It provides a good set of initialised weights to the deep architecture that can provide better generalisation of the data. In this paper, ... 详细信息
来源: 评论
FORECAST OF LOGISTICS DEMAND BASED ON GREY DEEP NEURAL NETWORK MODEL  17
FORECAST OF LOGISTICS DEMAND BASED ON GREY DEEP NEURAL NETWO...
收藏 引用
International Conference on Machine Learning and Cybernetics (ICMLC)
作者: Yuan, Wen-Jing Chen, Jian-Hua Cao, Jing-Jing Jin, Ze-Yi Wuhan Univ Technol Sch Logist Engn Wuhan 430063 Peoples R China
Aiming at the current problem of limited feature extraction ability and prediction accuracy of shallow neural networks, this paper proposes a grey deep neural network model by combining grey model and stacked autoenco... 详细信息
来源: 评论
Efficient Framework for Predicting ncRNA-Protein Interactions Based on Sequence Information by Deep Learning  14th
Efficient Framework for Predicting ncRNA-Protein Interaction...
收藏 引用
14th International Conference on Intelligent Computing (ICIC)
作者: Zhan, Zhao-Hui You, Zhu-Hong Zhou, Yong Li, Li-Ping Li, Zheng-Wei China Univ Min & Technol Sch Comp Sci & Technol Xuzhou 21116 Jiangsu Peoples R China Chinese Acad Sci Xinjiang Tech Inst Phys & Chem Urumqi 830011 Peoples R China
The interactions between proteins and RNA (RPIs) play a crucial role in most cellular processes such as RNA stability and translation. Although there have been many high-throughput experiments recently to detect RPIs,... 详细信息
来源: 评论
Deep Learning for Integrated Analysis of Breast Cancer Subtype Specific Multi-omics Data
Deep Learning for Integrated Analysis of Breast Cancer Subty...
收藏 引用
IEEE-Region-10 Conference (IEEE TENCON)
作者: Rakshit, Somnath Saha, Indrajit Chakraborty, Subha Shankar Plewczyski, Dariusz Jalpaiguri Govt Engn Coll Dept Comp Sci & Engn Jalpaiguri India Natl Inst Tech Teachers Training & Res Dept Comp Sci & Engn Kolkata India Univ Warsaw Lab Funct & Struct Genom Ctr New Technol Warsaw Poland
Breast cancer is a deadly disease which commonly occurs all over the world and has been found to be the largest cause of cancer in females. Its detection is still a major challenge, both from a computational and biolo... 详细信息
来源: 评论
Cross-lingual sentiment classification with stacked autoencoders
收藏 引用
KNOWLEDGE AND INFORMATION SYSTEMS 2016年 第1期47卷 27-44页
作者: Zhou, Guangyou Zhu, Zhiyuan He, Tingting Hu, Xiaohua Tony Cent China Normal Univ Sch Comp Wuhan 430079 Peoples R China Cent China Normal Univ Sch Comp Nat Language Proc Lab Wuhan 430079 Peoples R China Chinese Inst Elect Beijing 100036 Peoples R China Drexel Univ Coll Comp & Informat Philadelphia PA 19104 USA
Cross-lingual sentiment classification is a popular research topic in natural language processing. The fundamental challenge of cross-lingual learning stems from a lack of overlap between the feature spaces of the sou... 详细信息
来源: 评论