咨询与建议

限定检索结果

文献类型

  • 68 篇 期刊文献
  • 46 篇 会议

馆藏范围

  • 114 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 111 篇 工学
    • 55 篇 计算机科学与技术...
    • 38 篇 电气工程
    • 17 篇 控制科学与工程
    • 15 篇 信息与通信工程
    • 12 篇 仪器科学与技术
    • 10 篇 软件工程
    • 6 篇 机械工程
    • 5 篇 动力工程及工程热...
    • 5 篇 测绘科学与技术
    • 5 篇 化学工程与技术
    • 5 篇 环境科学与工程(可...
    • 5 篇 生物医学工程(可授...
    • 4 篇 石油与天然气工程
    • 3 篇 光学工程
    • 3 篇 生物工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 食品科学与工程(可...
  • 23 篇 理学
    • 8 篇 生物学
    • 6 篇 物理学
    • 4 篇 系统科学
    • 3 篇 数学
    • 3 篇 化学
    • 3 篇 地球物理学
  • 16 篇 管理学
    • 16 篇 管理科学与工程(可...
  • 14 篇 医学
    • 11 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 2 篇 公共卫生与预防医...
    • 2 篇 中西医结合
    • 2 篇 特种医学
  • 1 篇 经济学
    • 1 篇 理论经济学
  • 1 篇 农学

主题

  • 114 篇 stacked denoisin...
  • 39 篇 deep learning
  • 9 篇 feature extracti...
  • 8 篇 fault diagnosis
  • 6 篇 deep neural netw...
  • 5 篇 noise reduction
  • 5 篇 deep neural netw...
  • 5 篇 convolutional ne...
  • 4 篇 collaborative fi...
  • 4 篇 ensemble learnin...
  • 4 篇 recommender syst...
  • 4 篇 extreme learning...
  • 3 篇 compressive sens...
  • 3 篇 transfer learnin...
  • 3 篇 indoor positioni...
  • 3 篇 neural networks
  • 3 篇 cognitive worklo...
  • 3 篇 unsupervised fea...
  • 3 篇 gated recurrent ...
  • 3 篇 feature learning

机构

  • 3 篇 tongji univ sch ...
  • 3 篇 univ chinese aca...
  • 3 篇 jiangsu univ sch...
  • 3 篇 oslo metropolita...
  • 2 篇 tongji univ sch ...
  • 2 篇 tsinghua univ sh...
  • 2 篇 natl engn res ct...
  • 2 篇 china univ geosc...
  • 2 篇 cent south univ ...
  • 2 篇 harbin univ sci ...
  • 2 篇 guangdong univ t...
  • 1 篇 hefei univ techn...
  • 1 篇 newcastle univ s...
  • 1 篇 hangzhou appl ac...
  • 1 篇 east china univ ...
  • 1 篇 johns hopkins un...
  • 1 篇 jiangnan univ sc...
  • 1 篇 univ ulsan sch e...
  • 1 篇 dalian univ tech...
  • 1 篇 xi an jiao tong ...

作者

  • 5 篇 yu jianbo
  • 3 篇 zhou xin
  • 3 篇 xu fan
  • 3 篇 sun jun
  • 3 篇 zhang jianhua
  • 3 篇 yin zhong
  • 2 篇 zhang lei
  • 2 篇 zhao chunjiang
  • 2 篇 xu min
  • 2 篇 wang yongxiong
  • 2 篇 dai penglin
  • 2 篇 wang shijin
  • 2 篇 yang fang
  • 2 篇 liu yutian
  • 2 篇 zheng zhanpeng
  • 2 篇 yu jun
  • 2 篇 xu lin
  • 2 篇 shi lei
  • 2 篇 wang cong
  • 2 篇 wang jianxin

语言

  • 111 篇 英文
  • 2 篇 其他
  • 1 篇 中文
检索条件"主题词=stacked denoising autoencoder"
114 条 记 录,以下是91-100 订阅
排序:
A stacked denoising autoencoders Based Collaborative Approach for Recommender System  8th
A Stacked Denoising Autoencoders Based Collaborative Approac...
收藏 引用
8th International Symposium on Parallel Architectures, Algorithms, and Programming (PAAP)
作者: Niu, Baojun Zou, Dongsheng Niu, Yafeng Chongqing Univ Chongqing 400044 Peoples R China
This paper uses an autoencoder neural network as user feature learning component for collaborative filtering task. We propose a stacked denoising autoencoder (SDAE) based model to alleviate the sparseness issues in re... 详细信息
来源: 评论
A Comparative Study of Object Tracking using CNN and SDAE
A Comparative Study of Object Tracking using CNN and SDAE
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Yang, Wei Wang, Wei Gao, Yang Jin, Zhanpeng SUNY Binghamton Dept Elect & Comp Engn Binghamton NY 13902 USA Univ Buffalo SUNY Dept Comp Sci & Engn New York NY 14260 USA
Object tracking which refers to automatic estimation of the trajectory is a challenging problem. To track the object robustly and efficiently, we explored an autonomous object tracking methodological framework that ad... 详细信息
来源: 评论
Classification of EEG Signals for Cognitive Load Estimation Using Deep Learning Architectures  10th
Classification of EEG Signals for Cognitive Load Estimation ...
收藏 引用
10th International Conference on Intelligent Human Computer Interaction (IHCI)
作者: Saha, Anushri Minz, Vikash Bonela, Sanjith Sreeja, S. R. Chowdhury, Ritwika Samanta, Debasis Indian Inst Technol Kharagpur Dept Comp Sci & Engn Kharagpur W Bengal India Indian Inst Technol Kharagpur Dept Elect & Elect Commun Engn Kharagpur W Bengal India
Measuring cognitive load is crucial for many applications such as information personalization, adaptive intelligent tutoring systems, etc. Cognitive load estimation using Electroencephalogram (EEG) signals is widespre... 详细信息
来源: 评论
State Assessment and Fault Prediction Method of Distribution Terminal Based on SDAE and Hierarchical Bayesian
State Assessment and Fault Prediction Method of Distribution...
收藏 引用
Sustainable Power and Energy Conference (iSPEC)
作者: Runmiao Liu Shiyong Feng Yueming Cai Mingxiang Liu NARI Group Co. Ltd State Grid Electric Power Research Institute Nanjing China
State Assessment and Fault Prediction mechanism of distribution terminal is the premise of ensuring safe and reliable operation of power grid. However, the sample size of fault rate data of distribution terminal is us... 详细信息
来源: 评论
Machine Learning for Data Reduction in Quantum State Tomography  37
Machine Learning for Data Reduction in Quantum State Tomogra...
收藏 引用
37th Chinese Control Conference (CCC)
作者: Liu, Ximin Lu, Sicong Wu, Rebing Tsinghua Univ Inst Microelect Beijing 100084 Peoples R China Tsinghua Univ Dept Automat Beijing 100084 Peoples R China
The purpose of quantum state tomography (QST) is to obtain a complete quantum state by reconstructing a density matrix from experimental data and therefore gives researchers a powerful tool to analyze complex syntheti... 详细信息
来源: 评论
Dual denoising autoencoder Features for Imbalance Classification Problems  10
Dual Denoising Autoencoder Features for Imbalance Classifica...
收藏 引用
EEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData)
作者: Wang, Ting Zeng, Guangjun Ng, Wing W. Y. Li, Jinde South China Univ Technol Sch Comp Sci & Engn Guangzhou Guangdong Peoples R China
In pattern classification problems, it is difficult to force all classes to have the same number of training samples. Undersampling-based methods loss information while oversampling-based methods easily overfit. There... 详细信息
来源: 评论
A Deep Learning Model for Robust Wafer Fault Monitoring With Sensor Measurement Noise
收藏 引用
IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING 2017年 第1期30卷 23-31页
作者: Lee, Hoyeop Kim, Youngju Kim, Chang Ouk Yonsei Univ Dept Informat & Ind Engn Seoul 03722 South Korea
Standard fault detection and classification (FDC) models detect wafer faults by extracting features useful for fault detection from time-indexed measurements of the equipment recorded by in situ sensors (sensor signal... 详细信息
来源: 评论
Deep learning based total transfer capability calculation model
Deep learning based total transfer capability calculation mo...
收藏 引用
International Conference on Power System Technology (POWERCON)
作者: Yan, Jiongcheng Li, Changgang Liu, Yutian Shandong Univ Sch Elect Engn Jinan Shandong Peoples R China
A total transfer capability (TTC) calculation model based on stacked denoising autoencoder (SDAE) is proposed in this paper, considering static security, static voltage stability and transient stability constraints. T... 详细信息
来源: 评论
Semisupervised learning using denoising autoencoders for brain lesion detection and segmentation
收藏 引用
JOURNAL OF MEDICAL IMAGING 2017年 第4期4卷 041311页
作者: Alex, Varghese Vaidhya, Kiran Thirunavukkarasu, Subramaniam Kesavadas, Chandrasekharan Krishnamurthi, Ganapathy Indian Inst Technol Madras Dept Engn Design Madras Tamil Nadu India Sree Chitra Tirunal Inst Med Sci & Technol Dept Radiol Trivandrum Kerala India
The work explores the use of denoising autoencoders (DAEs) for brain lesion detection, segmentation, and false-positive reduction. stacked denoising autoencoders (SDAEs) were pretrained using a large number of unlabel... 详细信息
来源: 评论
A deep learning ensemble approach for crude oil price forecasting
收藏 引用
ENERGY ECONOMICS 2017年 66卷 9-16页
作者: Zhao, Yang Li, Jianping Yu, Lean Chinese Acad Sci Inst Policy & Management Beijing 100190 Peoples R China Univ Chinese Acad Sci Beijing Peoples R China Beijing Univ Chem Technol Sch Econ & Management Beijing Peoples R China
As crude oil price is influenced by numerous factors, capturing its behavior precisely is quite challenging, and thus leads to the difficulty of forecasting. In this study, a deep learning ensemble approach is propose... 详细信息
来源: 评论