咨询与建议

限定检索结果

文献类型

  • 68 篇 期刊文献
  • 46 篇 会议

馆藏范围

  • 114 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 111 篇 工学
    • 55 篇 计算机科学与技术...
    • 38 篇 电气工程
    • 17 篇 控制科学与工程
    • 15 篇 信息与通信工程
    • 12 篇 仪器科学与技术
    • 10 篇 软件工程
    • 6 篇 机械工程
    • 5 篇 动力工程及工程热...
    • 5 篇 测绘科学与技术
    • 5 篇 化学工程与技术
    • 5 篇 环境科学与工程(可...
    • 5 篇 生物医学工程(可授...
    • 4 篇 石油与天然气工程
    • 3 篇 光学工程
    • 3 篇 生物工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 食品科学与工程(可...
  • 23 篇 理学
    • 8 篇 生物学
    • 6 篇 物理学
    • 4 篇 系统科学
    • 3 篇 数学
    • 3 篇 化学
    • 3 篇 地球物理学
  • 16 篇 管理学
    • 16 篇 管理科学与工程(可...
  • 14 篇 医学
    • 11 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 2 篇 公共卫生与预防医...
    • 2 篇 中西医结合
    • 2 篇 特种医学
  • 1 篇 经济学
    • 1 篇 理论经济学
  • 1 篇 农学

主题

  • 114 篇 stacked denoisin...
  • 39 篇 deep learning
  • 9 篇 feature extracti...
  • 8 篇 fault diagnosis
  • 6 篇 deep neural netw...
  • 5 篇 noise reduction
  • 5 篇 deep neural netw...
  • 5 篇 convolutional ne...
  • 4 篇 collaborative fi...
  • 4 篇 ensemble learnin...
  • 4 篇 recommender syst...
  • 4 篇 extreme learning...
  • 3 篇 compressive sens...
  • 3 篇 transfer learnin...
  • 3 篇 indoor positioni...
  • 3 篇 neural networks
  • 3 篇 cognitive worklo...
  • 3 篇 unsupervised fea...
  • 3 篇 gated recurrent ...
  • 3 篇 feature learning

机构

  • 3 篇 tongji univ sch ...
  • 3 篇 univ chinese aca...
  • 3 篇 jiangsu univ sch...
  • 3 篇 oslo metropolita...
  • 2 篇 tongji univ sch ...
  • 2 篇 tsinghua univ sh...
  • 2 篇 natl engn res ct...
  • 2 篇 china univ geosc...
  • 2 篇 cent south univ ...
  • 2 篇 harbin univ sci ...
  • 2 篇 guangdong univ t...
  • 1 篇 hefei univ techn...
  • 1 篇 newcastle univ s...
  • 1 篇 hangzhou appl ac...
  • 1 篇 east china univ ...
  • 1 篇 johns hopkins un...
  • 1 篇 jiangnan univ sc...
  • 1 篇 univ ulsan sch e...
  • 1 篇 dalian univ tech...
  • 1 篇 xi an jiao tong ...

作者

  • 5 篇 yu jianbo
  • 3 篇 zhou xin
  • 3 篇 xu fan
  • 3 篇 sun jun
  • 3 篇 zhang jianhua
  • 3 篇 yin zhong
  • 2 篇 zhang lei
  • 2 篇 zhao chunjiang
  • 2 篇 xu min
  • 2 篇 wang yongxiong
  • 2 篇 dai penglin
  • 2 篇 wang shijin
  • 2 篇 yang fang
  • 2 篇 liu yutian
  • 2 篇 zheng zhanpeng
  • 2 篇 yu jun
  • 2 篇 xu lin
  • 2 篇 shi lei
  • 2 篇 wang cong
  • 2 篇 wang jianxin

语言

  • 111 篇 英文
  • 2 篇 其他
  • 2 篇 中文
检索条件"主题词=stacked denoising autoencoder"
114 条 记 录,以下是11-20 订阅
排序:
Health condition identification for rolling bearing using a multi-domain indicator-based optimized stacked denoising autoencoder
收藏 引用
STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL 2020年 第5期19卷 1602-1626页
作者: Yan, Xiaoan Liu, Ying Jia, Minping Nanjing Forestry Univ Sch Mechatron Engn Nanjing 210037 Jiangsu Peoples R China Southeast Univ Sch Mech Engn Nanjing Jiangsu Peoples R China
stacked denoising autoencoder is one of the most classic models of deep learning. However, there are two problems in the traditional stacked denoising autoencoder: (1) the parameter selection of stacked denoising auto... 详细信息
来源: 评论
denoising and feature extraction of weld seam profiles by stacked denoising autoencoder
收藏 引用
WELDING IN THE WORLD 2021年 第9期65卷 1725-1733页
作者: Li, Ran Gao, Hongming Harbin Inst Technol State Key Lab Adv Welding & Joining West Straight St 92 Harbin 150001 Peoples R China
Active vision sensing is widely used in intelligent robotic welding for bead detection and tracking. Disturbed by welding noise such as arc light and spatter, it is a hard work to extract the laser stripe and feature ... 详细信息
来源: 评论
SDARE: A stacked denoising autoencoder method for game dynamics network structure reconstruction
收藏 引用
NEURAL NETWORKS 2020年 126卷 143-152页
作者: Huang, Keke Li, Shuo Dai, Penglin Wang, Zhen Yu, Zhaofei Cent South Univ Sch Automat Changsha 410083 Peoples R China Southwest Jiaotong Univ Sch Informat Sci & Technol Chengdu 611756 Peoples R China Northwestern Polytech Univ Ctr Opt Imagery Anal & Learning Xian 710072 Peoples R China Peking Univ Dept Comp Sci & Technol Beijing 100871 Peoples R China Peng Cheng Lab Shenzhen 518055 Peoples R China
Complex network is a general model to represent the interactions within technological, social, information, and biological interaction. Often, the direct detection of the interaction relationship is costly. Thus, netw... 详细信息
来源: 评论
Video surveillance image enhancement via a convolutional neural network and stacked denoising autoencoder
收藏 引用
NEURAL COMPUTING & APPLICATIONS 2022年 第4期34卷 3079-3095页
作者: Che Aminudin, Muhamad Faris Suandi, Shahrel Azmin Univ Sains Malaysia Intelligent Biometr Grp Sch Elect & Elect Engn USM Engn Campus Nibong Tebal 14300 Pulau Pinang Malaysia
In an extensive-scale surveillance system, the quality of the surveillance camera installed varies. This variation of surveillance camera produces different image quality in terms of resolution, illumination, and nois... 详细信息
来源: 评论
Enhanced stacked denoising autoencoder-Based Feature Learning for Recognition of Wafer Map Defects
收藏 引用
IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING 2019年 第4期32卷 613-624页
作者: Yu, Jianbo Tongji Univ Sch Mech Engn Shanghai 201804 Peoples R China
In semiconductor manufacturing systems, defects on wafer maps tend to cluster and then these spatial patterns provide important process information for helping operators in finding out root-causes of abnormal processe... 详细信息
来源: 评论
Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification
收藏 引用
SIGNAL PROCESSING 2017年 第0期130卷 377-388页
作者: Lu, Chen Wang, Zhen-Ya Qin, Wei -Li Ma, Jian Beihang Univ Sch Reliabil & Syst Engn Xueyuan Rd Beijing Peoples R China Beihang Univ Sci & Technol Reliabil & Environm Engn Lab Xueyuan Rd Beijing Peoples R China
Effective fault diagnosis has long been a research topic in the prognosis and health management of rotary machinery engineered systems due to the benefits such as safety guarantees, reliability improvements, and econo... 详细信息
来源: 评论
Roller bearing fault diagnosis using stacked denoising autoencoder in deep learning and Gath-Geva clustering algorithm without principal component analysis and data label
收藏 引用
APPLIED SOFT COMPUTING 2018年 73卷 898-913页
作者: Xu, Fan Tse, Wai Tai Peter Tse, Yiu Lun City Univ Hong Kong Dept Syst Engn & Engn Management Tat Chee Ave Kowloon Hong Kong Peoples R China
Most deep learning models such as stacked autoencoder (SAE) and stacked denoising autoencoder (SDAE) are used for fault diagnosis with a data label. These models are applied to extract the useful features with several... 详细信息
来源: 评论
Automated feature learning for nonlinear process monitoring - An approach using stacked denoising autoencoder and k-nearest neighbor rule
收藏 引用
JOURNAL OF PROCESS CONTROL 2018年 64卷 49-61页
作者: Zhang, Zehan Jiang, Teng Li, Shuanghong Yang, Yupu Shanghai Jiao Tong Univ Dept Automat Minist Educ Syst Control & Informat Proc Key Lab Shanghai 200240 Peoples R China
Modern industrial processes have become increasingly complicated, consequently, the nonlinearity of data collected from these systems continues to increase. However, the feature extraction methods of existing process ... 详细信息
来源: 评论
Visual tracking based on stacked denoising autoencoder network with genetic algorithm optimization
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2018年 第4期77卷 4253-4269页
作者: Hua, Weixin Mu, Dejun Guo, Dawei Liu, Hang Northwestern Polytech Univ Sch Automat Xian 710072 Peoples R China China Mobile Ltd Co Shaanxi Xian 710074 Shaanxi Peoples R China
Visual object tracking in dynamic environments with severe appearance variations is a significant problem in the computer vision field. This paper proposes a novel visual tracking algorithm that exploits the multiple ... 详细信息
来源: 评论
Multiscale intelligent fault detection system based on agglomerative hierarchical clustering using stacked denoising autoencoder with temporal information
收藏 引用
APPLIED SOFT COMPUTING 2020年 95卷 106525-106525页
作者: Yu, Jianbo Yan, Xuefeng East China Univ Sci & Technol Key Lab Adv Control & Optimizat Chem Proc Minist Educ Shanghai 200237 Peoples R China
Deep learning-based process monitoring has achieved remarkable progress. Generally, a deep model is empirically selected before the data features are learned. In this study, the interpretability and suitability of sta... 详细信息
来源: 评论