咨询与建议

限定检索结果

文献类型

  • 68 篇 期刊文献
  • 46 篇 会议

馆藏范围

  • 114 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 111 篇 工学
    • 55 篇 计算机科学与技术...
    • 38 篇 电气工程
    • 17 篇 控制科学与工程
    • 15 篇 信息与通信工程
    • 12 篇 仪器科学与技术
    • 10 篇 软件工程
    • 6 篇 机械工程
    • 5 篇 动力工程及工程热...
    • 5 篇 测绘科学与技术
    • 5 篇 化学工程与技术
    • 5 篇 环境科学与工程(可...
    • 5 篇 生物医学工程(可授...
    • 4 篇 石油与天然气工程
    • 3 篇 光学工程
    • 3 篇 生物工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 食品科学与工程(可...
  • 23 篇 理学
    • 8 篇 生物学
    • 6 篇 物理学
    • 4 篇 系统科学
    • 3 篇 数学
    • 3 篇 化学
    • 3 篇 地球物理学
  • 16 篇 管理学
    • 16 篇 管理科学与工程(可...
  • 14 篇 医学
    • 11 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 2 篇 公共卫生与预防医...
    • 2 篇 中西医结合
    • 2 篇 特种医学
  • 1 篇 经济学
    • 1 篇 理论经济学
  • 1 篇 农学

主题

  • 114 篇 stacked denoisin...
  • 39 篇 deep learning
  • 9 篇 feature extracti...
  • 8 篇 fault diagnosis
  • 6 篇 deep neural netw...
  • 5 篇 noise reduction
  • 5 篇 deep neural netw...
  • 5 篇 convolutional ne...
  • 4 篇 collaborative fi...
  • 4 篇 ensemble learnin...
  • 4 篇 recommender syst...
  • 4 篇 extreme learning...
  • 3 篇 compressive sens...
  • 3 篇 transfer learnin...
  • 3 篇 indoor positioni...
  • 3 篇 neural networks
  • 3 篇 cognitive worklo...
  • 3 篇 unsupervised fea...
  • 3 篇 gated recurrent ...
  • 3 篇 feature learning

机构

  • 3 篇 tongji univ sch ...
  • 3 篇 univ chinese aca...
  • 3 篇 jiangsu univ sch...
  • 3 篇 oslo metropolita...
  • 2 篇 tongji univ sch ...
  • 2 篇 tsinghua univ sh...
  • 2 篇 natl engn res ct...
  • 2 篇 china univ geosc...
  • 2 篇 cent south univ ...
  • 2 篇 harbin univ sci ...
  • 2 篇 guangdong univ t...
  • 1 篇 hefei univ techn...
  • 1 篇 newcastle univ s...
  • 1 篇 hangzhou appl ac...
  • 1 篇 east china univ ...
  • 1 篇 johns hopkins un...
  • 1 篇 jiangnan univ sc...
  • 1 篇 univ ulsan sch e...
  • 1 篇 dalian univ tech...
  • 1 篇 xi an jiao tong ...

作者

  • 5 篇 yu jianbo
  • 3 篇 zhou xin
  • 3 篇 xu fan
  • 3 篇 sun jun
  • 3 篇 zhang jianhua
  • 3 篇 yin zhong
  • 2 篇 zhang lei
  • 2 篇 zhao chunjiang
  • 2 篇 xu min
  • 2 篇 wang yongxiong
  • 2 篇 dai penglin
  • 2 篇 wang shijin
  • 2 篇 yang fang
  • 2 篇 liu yutian
  • 2 篇 zheng zhanpeng
  • 2 篇 yu jun
  • 2 篇 xu lin
  • 2 篇 shi lei
  • 2 篇 wang cong
  • 2 篇 wang jianxin

语言

  • 111 篇 英文
  • 2 篇 其他
  • 2 篇 中文
检索条件"主题词=stacked denoising autoencoder"
114 条 记 录,以下是21-30 订阅
排序:
Fault Diagnosis for Hydraulic Servo System: A stacked denoising autoencoder Method based on Self-Learning of Robustness Features
Fault Diagnosis for Hydraulic Servo System: A Stacked Denois...
收藏 引用
Chinese Automation Congress (CAC)
作者: Wang, Zhenya Fan, Jiaxuan Huang, Hu Han, Te China Acad Launch Vehicle Technol Res & Dev Dept Beijing Peoples R China
The fault diagnosis of hydraulic servo system attracts more attention in complex system prognostics and health management. As the precondition of most fault diagnosis methods, feature extraction could efficiently draw... 详细信息
来源: 评论
Enhanced stacked denoising autoencoder-Based Feature Learning for Recognition of Wafer Map Defects
收藏 引用
IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING 2019年 第4期32卷 613-624页
作者: Yu, Jianbo Tongji Univ Sch Mech Engn Shanghai 201804 Peoples R China
In semiconductor manufacturing systems, defects on wafer maps tend to cluster and then these spatial patterns provide important process information for helping operators in finding out root-causes of abnormal processe... 详细信息
来源: 评论
Auxiliary stacked denoising autoencoder based Collaborative Filtering Recommendation
收藏 引用
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS 2020年 第6期14卷 2310-2332页
作者: Mu, Ruihui Zeng, Xiaoqin Hohai Univ Coll Comp & Informat Nanjing 210098 Peoples R China Xinxiang Univ Coll Comp & Informat Engn Xinxiang 453000 Henan Peoples R China
In recent years, deep learning techniques have achieved tremendous successes in natural language processing, speech recognition and image processing. Collaborative filtering(CF) recommendation is one of widely used me... 详细信息
来源: 评论
Fault Diagnosis of Multiple Combined Defects in Bearings Using a stacked denoising autoencoder
Fault Diagnosis of Multiple Combined Defects in Bearings Usi...
收藏 引用
International Conference on Computer, Communication and Computational Sciences (IC4S)
作者: Duong, Bach Phi Kim, Jong-Myon Univ Ulsan Sch Elect Engn Ulsan 680749 South Korea
Bearing fault diagnosis is an inevitable process in the maintenance of rotary machines. Multiple combined defects in bearings are more difficult to detect because of the complexity in components of acquired acoustic e... 详细信息
来源: 评论
Detecting Web Attacks using stacked denoising autoencoder and Ensemble Learning Methods  19
Detecting Web Attacks using Stacked Denoising Autoencoder an...
收藏 引用
10th International Symposium on Information and Communication Technology (SoICT)
作者: Truong, Dung Tran, Due Nguyen, Lam Mac, Hieu Tran, Hai Anh Bui, Tung HUST Bach Khoa Cybersecur Ctr Hanoi Vietnam
Web-based anomalies remains a serious security threat on the Internet. This paper proposes the use of Sum Rule and Xgboost to combine the outputs related to various stacked denoising autoencoders (SDAEs) in order to d... 详细信息
来源: 评论
An integrated scheme based on stacked denoising autoencoder and deep feature fusion for fault diagnosis of helicopter planetary gear train  10
An integrated scheme based on stacked denoising autoencoder ...
收藏 引用
10th IEEE Prognostics and System Health Management Conference (PHM-Qingdao)
作者: Sun, Canfei Wang, Youren Cao, Liang Nanjing Univ Aeronaut & Astronaut Coll Automat Engn Aviat Key Lab Sci & Technol Fault Diag & Hlth Man Nanjing Peoples R China Nanjing Univ Aeronaut & Astronaut Coll Automat Engn Nanjing Peoples R China Shanghai Aero Measurement & Control Technol Res I Res Ctr Shanghai Peoples R China
Planetary gear train plays a critical role in the helicopter transmission system. Fault diagnosis of the planetary gear train has long been a research topic in the health monitoring and maintenance of the helicopter. ... 详细信息
来源: 评论
A stacked denoising autoencoder Based on Supervised Pre-training
A Stacked Denoising Autoencoder Based on Supervised Pre-trai...
收藏 引用
International Conference on Smart Innovations in Communications and Computational Sciences (ICSICCS)
作者: Wang, Xiumei Mu, Shaomin Shi, Aiju Lin, Zhongqi Shandong Agr Univ Coll Informat Sci & Engn Tai An 271018 Shandong Peoples R China Shandong Agr Univ Coll Chem & Mat Sci Tai An 271018 Shandong Peoples R China
Deep learning has attracted much attention because of its ability to extract complex features automatically. Unsupervised pre-training plays an important role in the process of deep learning, but the monitoring inform... 详细信息
来源: 评论
Fault Location in VSC-HVDC Using stacked denoising autoencoder  3
Fault Location in VSC-HVDC Using Stacked Denoising Autoencod...
收藏 引用
3rd IEEE International Electrical and Energy Conference (CIEEC)
作者: Luo, Guomin Hei, Jiaxin Liu, Yanying Li, Meng He, Jinghan Beijing Jiaotong Univ Sch Elect Engn Beijing Peoples R China
This paper proposed an intelligent algorithm based approach for fault location in a high voltage direct current (HVDC) transmission system. To obtain post-fault signals, the point-to-point HVDC transmission lines, inc... 详细信息
来源: 评论
Roller bearing fault diagnosis using stacked denoising autoencoder in deep learning and Gath-Geva clustering algorithm without principal component analysis and data label
收藏 引用
APPLIED SOFT COMPUTING 2018年 73卷 898-913页
作者: Xu, Fan Tse, Wai Tai Peter Tse, Yiu Lun City Univ Hong Kong Dept Syst Engn & Engn Management Tat Chee Ave Kowloon Hong Kong Peoples R China
Most deep learning models such as stacked autoencoder (SAE) and stacked denoising autoencoder (SDAE) are used for fault diagnosis with a data label. These models are applied to extract the useful features with several... 详细信息
来源: 评论
Automated feature learning for nonlinear process monitoring - An approach using stacked denoising autoencoder and k-nearest neighbor rule
收藏 引用
JOURNAL OF PROCESS CONTROL 2018年 64卷 49-61页
作者: Zhang, Zehan Jiang, Teng Li, Shuanghong Yang, Yupu Shanghai Jiao Tong Univ Dept Automat Minist Educ Syst Control & Informat Proc Key Lab Shanghai 200240 Peoples R China
Modern industrial processes have become increasingly complicated, consequently, the nonlinearity of data collected from these systems continues to increase. However, the feature extraction methods of existing process ... 详细信息
来源: 评论