咨询与建议

限定检索结果

文献类型

  • 68 篇 期刊文献
  • 46 篇 会议

馆藏范围

  • 114 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 111 篇 工学
    • 55 篇 计算机科学与技术...
    • 38 篇 电气工程
    • 17 篇 控制科学与工程
    • 15 篇 信息与通信工程
    • 12 篇 仪器科学与技术
    • 10 篇 软件工程
    • 6 篇 机械工程
    • 5 篇 动力工程及工程热...
    • 5 篇 测绘科学与技术
    • 5 篇 化学工程与技术
    • 5 篇 环境科学与工程(可...
    • 5 篇 生物医学工程(可授...
    • 4 篇 石油与天然气工程
    • 3 篇 光学工程
    • 3 篇 生物工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 食品科学与工程(可...
  • 23 篇 理学
    • 8 篇 生物学
    • 6 篇 物理学
    • 4 篇 系统科学
    • 3 篇 数学
    • 3 篇 化学
    • 3 篇 地球物理学
  • 16 篇 管理学
    • 16 篇 管理科学与工程(可...
  • 14 篇 医学
    • 11 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 2 篇 公共卫生与预防医...
    • 2 篇 中西医结合
    • 2 篇 特种医学
  • 1 篇 经济学
    • 1 篇 理论经济学
  • 1 篇 农学

主题

  • 114 篇 stacked denoisin...
  • 39 篇 deep learning
  • 9 篇 feature extracti...
  • 8 篇 fault diagnosis
  • 6 篇 deep neural netw...
  • 5 篇 noise reduction
  • 5 篇 deep neural netw...
  • 5 篇 convolutional ne...
  • 4 篇 collaborative fi...
  • 4 篇 ensemble learnin...
  • 4 篇 recommender syst...
  • 4 篇 extreme learning...
  • 3 篇 compressive sens...
  • 3 篇 transfer learnin...
  • 3 篇 indoor positioni...
  • 3 篇 neural networks
  • 3 篇 cognitive worklo...
  • 3 篇 unsupervised fea...
  • 3 篇 gated recurrent ...
  • 3 篇 feature learning

机构

  • 3 篇 tongji univ sch ...
  • 3 篇 univ chinese aca...
  • 3 篇 jiangsu univ sch...
  • 3 篇 oslo metropolita...
  • 2 篇 tongji univ sch ...
  • 2 篇 tsinghua univ sh...
  • 2 篇 natl engn res ct...
  • 2 篇 china univ geosc...
  • 2 篇 cent south univ ...
  • 2 篇 harbin univ sci ...
  • 2 篇 guangdong univ t...
  • 1 篇 hefei univ techn...
  • 1 篇 newcastle univ s...
  • 1 篇 hangzhou appl ac...
  • 1 篇 east china univ ...
  • 1 篇 johns hopkins un...
  • 1 篇 jiangnan univ sc...
  • 1 篇 univ ulsan sch e...
  • 1 篇 dalian univ tech...
  • 1 篇 xi an jiao tong ...

作者

  • 5 篇 yu jianbo
  • 3 篇 zhou xin
  • 3 篇 xu fan
  • 3 篇 sun jun
  • 3 篇 zhang jianhua
  • 3 篇 yin zhong
  • 2 篇 zhang lei
  • 2 篇 zhao chunjiang
  • 2 篇 xu min
  • 2 篇 wang yongxiong
  • 2 篇 dai penglin
  • 2 篇 wang shijin
  • 2 篇 yang fang
  • 2 篇 liu yutian
  • 2 篇 zheng zhanpeng
  • 2 篇 yu jun
  • 2 篇 xu lin
  • 2 篇 shi lei
  • 2 篇 wang cong
  • 2 篇 wang jianxin

语言

  • 111 篇 英文
  • 2 篇 其他
  • 2 篇 中文
检索条件"主题词=stacked denoising autoencoder"
114 条 记 录,以下是51-60 订阅
排序:
A stacked denoising autoencoders Based Collaborative Approach for Recommender System  8th
A Stacked Denoising Autoencoders Based Collaborative Approac...
收藏 引用
8th International Symposium on Parallel Architectures, Algorithms, and Programming (PAAP)
作者: Niu, Baojun Zou, Dongsheng Niu, Yafeng Chongqing Univ Chongqing 400044 Peoples R China
This paper uses an autoencoder neural network as user feature learning component for collaborative filtering task. We propose a stacked denoising autoencoder (SDAE) based model to alleviate the sparseness issues in re... 详细信息
来源: 评论
Dual denoising autoencoder Features for Imbalance Classification Problems  10
Dual Denoising Autoencoder Features for Imbalance Classifica...
收藏 引用
EEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData)
作者: Wang, Ting Zeng, Guangjun Ng, Wing W. Y. Li, Jinde South China Univ Technol Sch Comp Sci & Engn Guangzhou Guangdong Peoples R China
In pattern classification problems, it is difficult to force all classes to have the same number of training samples. Undersampling-based methods loss information while oversampling-based methods easily overfit. There... 详细信息
来源: 评论
Life prediction of lithium-ion batteries based on stacked denoising autoencoders
收藏 引用
RELIABILITY ENGINEERING & SYSTEM SAFETY 2021年 208卷 107396-107396页
作者: Xu, Fan Yang, Fangfang Fei, Zicheng Huang, Zhelin Tsui, Kwok-Leung China Univ Geosci Sch Automat Wuhan 430072 Hubei Peoples R China City Univ Hong Kong Sch Data Sci Kowloon Tong 83 Tat Chee Ave Hong Kong Peoples R China Shenzhen Univ Sch Econ Dept Stat Shenzhen 518061 Peoples R China Virginia Polytech Inst & State Univ Grad Dept Ind & Syst Engn 225 Durham Hall1145 Perry St Blacksburg VA 24061 USA
Accurate life prediction of lithium-ion batteries is important to help assess battery quality in advance, improve long-term battery planning, and subsequently guarantee the safety and reliability of battery operations... 详细信息
来源: 评论
Intelligent sensor validation for sustainable influent quality monitoring in wastewater treatment plants using stacked denoising autoencoders
收藏 引用
JOURNAL OF WATER PROCESS ENGINEERING 2021年 43卷
作者: Ba-Alawi, Abdulrahman H. Vilela, Paulina Loy-Benitez, Jorge Heo, SungKu Yoo, ChangKyoo Kyung Hee Univ Dept Environm Sci & Engn Coll Engn Integrated Engn 1732 Deogyeong Daero Yongin 17104 Gyeonggi Do South Korea
Wastewater treatment plants (WWTPs) influent conditions can dramatically affect a treatment unit's state and effluent quality. WWTP sensors may record faulty measurements due to abnormal events or the malfunction ... 详细信息
来源: 评论
Deep Learning Approach Based on Tensor-Train for Sparse Signal Recovery
收藏 引用
IEEE ACCESS 2019年 7卷 34753-34761页
作者: Zou, Cong Yang, Fang Tsinghua Univ Beijing Natl Res Ctr Informat Sci & Technol BNRis Dept Elect Engn Beijing 100084 Peoples R China Tsinghua Univ Shenzhen Res Inst Key Lab Digital TV Syst Guangdong Prov & Shenzhen Shenzhen 518057 Peoples R China
Compressive sensing is a desirable technique to acquire and reconstruct signals at sub-Nyquist rates. Recently, several deep learning-based studies on solving the compressive sensing problem have been carried out, whi... 详细信息
来源: 评论
Combining iterative slow feature analysis and deep feature learning for change detection in high-resolution remote sensing images
收藏 引用
JOURNAL OF APPLIED REMOTE SENSING 2019年 第2期13卷
作者: Xu, Junfeng Zhang, Baoming Guo, Haitao Lu, Jun Lin, Yuzhun Informat Engn Univ Inst Geospatial Informat Zhengzhou Henan Peoples R China
In order to make full use of local neighborhood information for high-resolution remote sensing images, this study combined iterative slow feature analysis (ISFA) and stacked denoising autoencoder (SDAE) to improve the... 详细信息
来源: 评论
Transfer learning for short-term wind speed prediction with deep neural networks
收藏 引用
RENEWABLE ENERGY 2016年 第Jan.期85卷 83-95页
作者: Hu, Qinghua Zhang, Rujia Zhou, Yucan Tianjin Univ Sch Comp Sci & Technol Tianjin 300072 Peoples R China
As a type of clean and renewable energy source, wind power is widely used. However, owing to the uncertainty of wind speed, it is essential to build an accurate forecasting model for large-scale wind power penetration... 详细信息
来源: 评论
An Automatic Cardiac Arrhythmia Classification System With Wearable Electrocardiogram
收藏 引用
IEEE ACCESS 2018年 6卷 16529-16538页
作者: Xia, Yufa Zhang, Huailing Xu, Lin Gao, Zhifan Zhang, Heye Liu, Huafeng Li, Shou Chinese Acad Sci Shenzhen Inst Adv Technol Shenzhen 518055 Peoples R China Guangdong Med Univ Sch Informat Engn Dongguan 523808 Peoples R China Gen Hosp Guangzhou Mil Command PLA Dept Cardiol Guangzhou 510000 Guangdong Peoples R China Zhejiang Univ Dept Opt Engn State Key Lab Modern Opt Instrumentat Hangzhou 310027 Zhejiang Peoples R China Western Univ London ON N6A 3K7 Canada
This paper presents an automatic wearable electrocardiogram (ECG) classification and monitoring system with stacked denoising autoencoder (SDAE). We use a wearable device with wireless sensors to obtain the ECG data, ... 详细信息
来源: 评论
A deep learning-based conditional system health index method to reduce the uncertainty of remaining useful life prediction
收藏 引用
SOFT COMPUTING 2023年 第7期27卷 3641-3654页
作者: Jang, Jaeyeon Catholic Univ Korea Dept Data Sci 43 Jibong Ro Bucheon 14662 South Korea
Many recent data-driven studies have used sensor profile data for prognostics and health management (PHM). However, existing data-driven PHM techniques are vulnerable to three types of uncertainty: sensor noise inhere... 详细信息
来源: 评论
Sparsity-based autoencoders for denoising cluttered radar signatures
收藏 引用
IET RADAR SONAR AND NAVIGATION 2021年 第8期15卷 915-931页
作者: Ram, Shobha Sundar Vishwakarma, Shelly Sneh, Akanksha Yasmeen, Kainat Indraprastha Inst Informat Technol New Delhi 110020 India UCL Dept Secur & Crime Sci London England
Narrowband and broadband indoor radar images significantly deteriorate in the presence of target-dependent and target-independent static and dynamic clutter arising from walls. A stacked and sparse denoising autoencod... 详细信息
来源: 评论