咨询与建议

限定检索结果

文献类型

  • 68 篇 期刊文献
  • 46 篇 会议

馆藏范围

  • 114 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 111 篇 工学
    • 55 篇 计算机科学与技术...
    • 38 篇 电气工程
    • 17 篇 控制科学与工程
    • 15 篇 信息与通信工程
    • 12 篇 仪器科学与技术
    • 10 篇 软件工程
    • 6 篇 机械工程
    • 5 篇 动力工程及工程热...
    • 5 篇 测绘科学与技术
    • 5 篇 化学工程与技术
    • 5 篇 环境科学与工程(可...
    • 5 篇 生物医学工程(可授...
    • 4 篇 石油与天然气工程
    • 3 篇 光学工程
    • 3 篇 生物工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 食品科学与工程(可...
  • 23 篇 理学
    • 8 篇 生物学
    • 6 篇 物理学
    • 4 篇 系统科学
    • 3 篇 数学
    • 3 篇 化学
    • 3 篇 地球物理学
  • 16 篇 管理学
    • 16 篇 管理科学与工程(可...
  • 14 篇 医学
    • 11 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 2 篇 公共卫生与预防医...
    • 2 篇 中西医结合
    • 2 篇 特种医学
  • 1 篇 经济学
    • 1 篇 理论经济学
  • 1 篇 农学

主题

  • 114 篇 stacked denoisin...
  • 39 篇 deep learning
  • 9 篇 feature extracti...
  • 8 篇 fault diagnosis
  • 6 篇 deep neural netw...
  • 5 篇 noise reduction
  • 5 篇 deep neural netw...
  • 5 篇 convolutional ne...
  • 4 篇 collaborative fi...
  • 4 篇 ensemble learnin...
  • 4 篇 recommender syst...
  • 4 篇 extreme learning...
  • 3 篇 compressive sens...
  • 3 篇 transfer learnin...
  • 3 篇 indoor positioni...
  • 3 篇 neural networks
  • 3 篇 cognitive worklo...
  • 3 篇 unsupervised fea...
  • 3 篇 gated recurrent ...
  • 3 篇 feature learning

机构

  • 3 篇 tongji univ sch ...
  • 3 篇 univ chinese aca...
  • 3 篇 jiangsu univ sch...
  • 3 篇 oslo metropolita...
  • 2 篇 tongji univ sch ...
  • 2 篇 tsinghua univ sh...
  • 2 篇 natl engn res ct...
  • 2 篇 china univ geosc...
  • 2 篇 cent south univ ...
  • 2 篇 harbin univ sci ...
  • 2 篇 guangdong univ t...
  • 1 篇 hefei univ techn...
  • 1 篇 newcastle univ s...
  • 1 篇 hangzhou appl ac...
  • 1 篇 east china univ ...
  • 1 篇 johns hopkins un...
  • 1 篇 jiangnan univ sc...
  • 1 篇 univ ulsan sch e...
  • 1 篇 dalian univ tech...
  • 1 篇 xi an jiao tong ...

作者

  • 5 篇 yu jianbo
  • 3 篇 zhou xin
  • 3 篇 xu fan
  • 3 篇 sun jun
  • 3 篇 zhang jianhua
  • 3 篇 yin zhong
  • 2 篇 zhang lei
  • 2 篇 zhao chunjiang
  • 2 篇 xu min
  • 2 篇 wang yongxiong
  • 2 篇 dai penglin
  • 2 篇 wang shijin
  • 2 篇 yang fang
  • 2 篇 liu yutian
  • 2 篇 zheng zhanpeng
  • 2 篇 yu jun
  • 2 篇 xu lin
  • 2 篇 shi lei
  • 2 篇 wang cong
  • 2 篇 wang jianxin

语言

  • 111 篇 英文
  • 2 篇 其他
  • 1 篇 中文
检索条件"主题词=stacked denoising autoencoder"
114 条 记 录,以下是81-90 订阅
排序:
Assessing cognitive mental workload via EEG signals and an ensemble deep learning classifier based on denoising autoencoders
收藏 引用
COMPUTERS IN BIOLOGY AND MEDICINE 2019年 109卷 159-170页
作者: Yang, Shuo Yin, Zhong Wang, Yagang Zhang, Wei Wang, Yongxiong Zhang, Jianhua Univ Shanghai Sci & Technol Sch Opt Elect & Comp Engn Shanghai 200093 Peoples R China Univ Shanghai Sci & Technol Shanghai Key Lab Modern Opt Syst Minist Educ Engn Res Ctr Opt Instrument & Syst Shanghai 200093 Peoples R China Oslo Metropolitan Univ Dept Comp Sci OsloMet Artificial Intelligence Lab N-0130 Oslo Norway
To estimate the reliability and cognitive states of operator performance in a human-machine collaborative environment, we propose a novel human mental workload (MW) recognizer based on deep learning principles and uti... 详细信息
来源: 评论
A deep autoencoder feature learning method for process pattern recognition
收藏 引用
JOURNAL OF PROCESS CONTROL 2019年 79卷 1-15页
作者: Yu, Jianbo Zheng, Xiaoyun Wang, Shijin Tongji Univ Sch Mech Engn Shanghai 200082 Peoples R China Tongji Univ Sch Econ & Management Shanghai 200082 Peoples R China
Recognition of various defect patterns exhibited in discrete manufacturing processes can significantly reduce the diagnostic processes, and increase manufacturing process stability and quality. Thus the effective reco... 详细信息
来源: 评论
AIMAFE: Autism spectrum disorder identification with multi-atlas deep feature representation and ensemble learning
收藏 引用
JOURNAL OF NEUROSCIENCE METHODS 2020年 第0期343卷 108840-108840页
作者: Wang, Yufei Wang, Jianxin Wu, Fang-Xiang Hayrat, Rahmatjan Liu, Jin Cent South Univ Sch Comp Sci & Engn Hunan Prov Key Lab Bioinformat Changsha 410083 Peoples R China Univ Saskatchewan Div Biomed Engn Saskatoon SK S7N 5A9 Canada Univ Saskatchewan Dept Mech Engn Saskatoon SK S7N 5A9 Canada
Background: Autism spectrum disorder (ASD) is a neurodevelopmental disorder that could cause problems in social communications. Clinically, diagnosing ASD mainly relies on behavioral criteria while this approach is no... 详细信息
来源: 评论
Tensor-Train Based Deep Learning Approach for Compressive Sensing in Mobile Computing  15
Tensor-Train Based Deep Learning Approach for Compressive Se...
收藏 引用
15th IEEE International Wireless Communications and Mobile Computing Conference (IEEE IWCMC)
作者: Zou, Cong Yang, Fang Tsinghua Univ Dept Elect Engn Beijing 100084 Peoples R China Beijing Natl Res Ctr Informat Sci & Technol BNRis Beijing 100084 Peoples R China Tsinghua Univ Shenzhen Res Inst Key Lab Digital TV Syst Guangdong Prov & Shenzhen Shenzhen 518057 Peoples R China
Several recent studies have been conducted on solving the compressive sensing problem with deep learning framework, which enhance the signal recovery performance and greatly shorten the running time compared with trad... 详细信息
来源: 评论
An ELM-based Deep SDAE Ensemble for Inter-Subject Cognitive Workload Estimation with Physiological Signals
An ELM-based Deep SDAE Ensemble for Inter-Subject Cognitive ...
收藏 引用
第三十九届中国控制会议
作者: Zhanpeng Zheng Zhong Yin Jianhua Zhang Engineering Research Center of Optical Instrument and System Ministry of EducationShanghai Key Lab of Modern Optical SystemUniversity of Shanghai for Science and Technology
Evaluating operator cognitive workload(CW) levels in human-machine systems based on neurophysiological signals is becoming the basis to prevent serious accidents due to abnormal state of human *** study proposes an ... 详细信息
来源: 评论
Hybrid Deep Neural Network based on SDAE and GRUNN
Hybrid Deep Neural Network based on SDAE and GRUNN
收藏 引用
第三十九届中国控制会议
作者: Yingyong Zou Jun Yu Jiangen Tang Yongde Zhang School of Mechanical and Power Engineering Harbin University of Science and Technology College of Mechanical and Vehicular Engineering Changchun University Key Laboratory of Advanced Manufacturing and Intelligent Technology Harbin University of Science and Technology School of Automation Harbin University of Science and Technology
stacked autoencoder(SAE) is hard to achieve satisfactory performance,when input data are complex and ***,the identification performance of recurrent neural network(RNN) may decrease rapidly under noisy *** order to de... 详细信息
来源: 评论
An Automatic Cardiac Arrhythmia Classification System With Wearable Electrocardiogram
收藏 引用
IEEE ACCESS 2018年 6卷 16529-16538页
作者: Xia, Yufa Zhang, Huailing Xu, Lin Gao, Zhifan Zhang, Heye Liu, Huafeng Li, Shou Chinese Acad Sci Shenzhen Inst Adv Technol Shenzhen 518055 Peoples R China Guangdong Med Univ Sch Informat Engn Dongguan 523808 Peoples R China Gen Hosp Guangzhou Mil Command PLA Dept Cardiol Guangzhou 510000 Guangdong Peoples R China Zhejiang Univ Dept Opt Engn State Key Lab Modern Opt Instrumentat Hangzhou 310027 Zhejiang Peoples R China Western Univ London ON N6A 3K7 Canada
This paper presents an automatic wearable electrocardiogram (ECG) classification and monitoring system with stacked denoising autoencoder (SDAE). We use a wearable device with wireless sensors to obtain the ECG data, ... 详细信息
来源: 评论
A Deep End-to-End Model for Transient Stability Assessment With PMU Data
收藏 引用
IEEE ACCESS 2018年 6卷 65474-65487页
作者: Zhu, Qiaomu Chen, Jinfu Zhu, Lin Shi, Dongyuan Bai, Xiang Duan, Xianzhong Liu, Yilu Huazhong Univ Sci & Technol Sch Elect & Elect Engn Elect Power Secur & High Efficiency Key Lab State Key Lab Adv Electromagnet Engn & Technol Wuhan 430074 Hubei Peoples R China Univ Tennessee Dept Elect Engn & Comp Sci Knoxville TN 37996 USA Huazhong Univ Sci & Technol Sch Elect Informat & Commun Wuhan 430074 Hubei Peoples R China
Accurate transient stability assessment (TSA) is a fundamental requirement for ensuring secure and stable operation of power systems. Tremendous efforts have been made to apply artificial intelligence approaches for T... 详细信息
来源: 评论
Transformer Fault Diagnosis Using Self-Powered RFID Sensor and Deep Learning Approach
收藏 引用
IEEE SENSORS JOURNAL 2018年 第15期18卷 6399-6411页
作者: Wang, Tao He, Yigang Li, Bing Shi, Tiancheng Hefei Univ Technol Sch Elect Engn & Automat Hefei 230009 Anhui Peoples R China Wuhan Univ Sch Elect Engn Wuhan 430072 Hubei Peoples R China
This paper introduces a novel fault diagnosis approach for transformer based on self-powered radio-frequency identification (RFID) sensor and deep learning technique. The exploited RFID sensor tag with functionalities... 详细信息
来源: 评论
Feature Ensemble Learning Using stacked denoising autoencoders for Induction Motor Fault Diagnosis  8
Feature Ensemble Learning Using Stacked Denoising Autoencode...
收藏 引用
2017 Prognostics and System Health Management Conference (PHM-Harbin)
作者: Wang, Junwei Sun, Chuang Zhao, Zhibin Chen, Xuefeng Xi An Jiao Tong Univ State Key Lab Mfg Syst Xian 710049 Shaanxi Peoples R China
Fault diagnosis is significant to induction motor which has been widely used as industrial power driving sources. By fault diagnosis, proper maintenance can be arranged to avoid accidents, ensure safety and reduce mai... 详细信息
来源: 评论