咨询与建议

限定检索结果

文献类型

  • 23 篇 期刊文献
  • 6 篇 会议

馆藏范围

  • 29 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 25 篇 工学
    • 11 篇 电气工程
    • 11 篇 计算机科学与技术...
    • 8 篇 控制科学与工程
    • 3 篇 信息与通信工程
    • 3 篇 软件工程
    • 1 篇 仪器科学与技术
  • 9 篇 理学
    • 7 篇 数学
    • 3 篇 统计学(可授理学、...
    • 1 篇 物理学
  • 3 篇 管理学
    • 3 篇 管理科学与工程(可...
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 29 篇 stochastic gradi...
  • 4 篇 coordinate desce...
  • 3 篇 adaptive methods
  • 3 篇 momentum
  • 3 篇 stochastic optim...
  • 2 篇 computational co...
  • 2 篇 recursive estima...
  • 2 篇 random optimizat...
  • 2 篇 adaptive beamfor...
  • 2 篇 stochastic parti...
  • 2 篇 robust statistic...
  • 2 篇 diffusion strate...
  • 2 篇 functional data ...
  • 2 篇 gradient methods
  • 2 篇 global optimizat...
  • 2 篇 modified equatio...
  • 2 篇 convergence anal...
  • 2 篇 stochastic syste...
  • 2 篇 nesterov's accel...
  • 2 篇 simulated anneal...

机构

  • 2 篇 mit informat & d...
  • 2 篇 univ calif los a...
  • 2 篇 mit dept elect e...
  • 2 篇 nanyang technol ...
  • 2 篇 lehigh univ dept...
  • 2 篇 harbin engn univ...
  • 1 篇 beijing institut...
  • 1 篇 peking univ peop...
  • 1 篇 univ modena & re...
  • 1 篇 ibm res thomas j...
  • 1 篇 department of ma...
  • 1 篇 univ strathclyde...
  • 1 篇 thomas j watson ...
  • 1 篇 univ bourgogne i...
  • 1 篇 beijing inst big...
  • 1 篇 natl univ singap...
  • 1 篇 princeton univ p...
  • 1 篇 department of st...
  • 1 篇 comsat corp dept...
  • 1 篇 cornell univ sch...

作者

  • 3 篇 gelfand sb
  • 2 篇 samir tamer a.
  • 2 篇 nguyen lam m.
  • 2 篇 wang chengcheng
  • 2 篇 mitter sk
  • 2 篇 scheinberg katya
  • 2 篇 ying bicheng
  • 2 篇 takac martin
  • 2 篇 zhang yonggang
  • 2 篇 godichon-baggion...
  • 2 篇 sayed ali h.
  • 2 篇 elnoubi said
  • 2 篇 elnashar ayman
  • 1 篇 phuong ha nguyen
  • 1 篇 richtarik peter
  • 1 篇 françois portier
  • 1 篇 chen mengting
  • 1 篇 wang ren
  • 1 篇 bellavia stefani...
  • 1 篇 li qianxiao

语言

  • 29 篇 英文
检索条件"主题词=stochastic gradient algorithms"
29 条 记 录,以下是1-10 订阅
排序:
stochastic Modified Equations and Dynamics of stochastic gradient algorithms I: Mathematical Foundations
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2019年 第1期20卷 1474-1520页
作者: Li, Qianxiao Tai, Cheng Weinan, E. Agcy Sci Technol & Res Inst High Performance Comp 1 Fusionopolis Way Singapore 138632 Singapore Beijing Inst Big Data Res Beijing 100080 Peoples R China Peking Univ Beijing 100080 Peoples R China Princeton Univ Princeton NJ 08544 USA
We develop the mathematical foundations of the stochastic modified equations (SME) framework for analyzing the dynamics of stochastic gradient algorithms, where the latter is approximated by a class of stochastic diff... 详细信息
来源: 评论
New Convergence Aspects of stochastic gradient algorithms
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2019年 第1期20卷 1-49页
作者: Nguyen, Lam M. Phuong Ha Nguyen Richtarik, Peter Scheinberg, Katya Takac, Martin van Dijk, Marten Thomas J Watson Res Ctr IBM Res Yorktown Hts NY 10598 USA Univ Connecticut Dept Elect & Comp Engn Storrs CT 06268 USA King Abdullah Univ Sci & Technol Comp Elect & Math Sci & Engn Div Thuwal Saudi Arabia Cornell Univ Sch Operat Res & Informat Engn Ithaca NY 14850 USA Lehigh Univ Dept Ind & Syst Engn Bethlehem PA 18015 USA
The classical convergence analysis of SGD is carried out under the assumption that the norm of the stochastic gradient is uniformly bounded. While this might hold for some loss functions, it is violated for cases wher... 详细信息
来源: 评论
Projected stochastic gradient Langevin algorithms for Constrained Sampling and Non-Convex Learning  34
Projected Stochastic Gradient Langevin Algorithms for Constr...
收藏 引用
Conference on Learning Theory (COLT)
作者: Lamperski, Andrew 200 Union St Se Keller Hall 4-174 Minneapolis MN 55455 USA
Langevin algorithms are gradient descent methods with additive noise. They have been used for decades in Markov Chain Monte Carlo (MCMC) sampling, optimization, and learning. Their convergence properties for unconstra... 详细信息
来源: 评论
stochastic modified equations and dynamics of stochastic gradient algorithms I: mathematical foundations
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2019年 第1期20卷
作者: Qianxiao Li Cheng Tai E. Weinan Institute of High Performance Computing Agency for Science Technology and Research Connexis North Singapore Beijing Institute of Big Data Research and Peking University Beijing China Princeton University Princeton NJ and Beijing Institute of Big Data Research Beijing China
We develop the mathematical foundations of the stochastic modified equations (SME) framework for analyzing the dynamics of stochastic gradient algorithms, where the latter is approximated by a class of stochastic diff... 详细信息
来源: 评论
Estimating the geometric median in Hilbert spaces with stochastic gradient algorithms: Lp and almost sure rates of convergence
收藏 引用
JOURNAL OF MULTIVARIATE ANALYSIS 2016年 146卷 209-222页
作者: Godichon-Baggioni, Antoine Univ Bourgogne Inst Math Bourgogne 9 Rue Alain Savary F-21078 Dijon France
The geometric median, also called L-1-median, is often used in robust statistics. Moreover, it is more and more usual to deal with large samples taking values in high dimensional spaces. In this context, a fast recurs... 详细信息
来源: 评论
Weighted stochastic gradient Identification algorithms for ARX models
收藏 引用
IFAC-PapersOnLine 2015年 第28期48卷 1076-1081页
作者: Wu, Ai-Guo Dong, Rui-Qi Fu, Fang-Zhou Harbin Institute of Technology Shenzhen Graduate School Shenzhen518055 China
In this paper, weighted stochastic gradient (WSG) algorithms for ARX models are proposed by modifying the standard stochastic gradient identification algorithms. In the proposed algorithms, the correction term is a we... 详细信息
来源: 评论
SGD with Coordinate Sampling: Theory and Practice
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2022年 第1期23卷 1-47页
作者: Leluc, Remi Portier, Francois Inst Polytech Paris Telecom Paris LTCI Dept Stat F-91120 Palaiseau France Ecole Natl Stat & Anal Informat ENSAI Dept Stat CREST F-35170 Bruz France
While classical forms of stochastic gradient descent algorithm treat the different coordinates in the same way, a framework allowing for adaptive (non uniform) coordinate sampling is developed to leverage structure in... 详细信息
来源: 评论
An investigation of stochastic trust-region based algorithms for finite-sum minimization
收藏 引用
OPTIMIZATION METHODS & SOFTWARE 2024年 第5期39卷 937-966页
作者: Bellavia, Stefania Morini, Benedetta Rebegoldi, Simone Univ Firenze Dipartimento Ingn Ind Florence Italy Univ Modena & Reggio Emilia Dipartimento Sci Fis Informat & Matemat Via Giuseppe Campi 213-B Modena Italy
This work elaborates on the TRust-region-ish (TRish) algorithm, a stochastic optimization method for finite-sum minimization problems proposed by Curtis et al. in [F.E. Curtis, K. Scheinberg, and R. Shi, A stochastic ... 详细信息
来源: 评论
A Memory Enhancement Adjustment Method Based on stochastic gradients  41
A Memory Enhancement Adjustment Method Based on Stochastic G...
收藏 引用
第41届中国控制会议
作者: Gan Li Key Laboratory of Systems and Control Institute of Systems ScienceAcademy of Mathematics and Systems ScienceChinese Academy of Sciences
stochastic gradient descent methods and its variants have been widely used to learn the parameters of a neural network by solving an associated non-convex minimization *** propose a new momentum method and adaptive me... 详细信息
来源: 评论
Inexact SARAH algorithm for stochastic optimization
收藏 引用
OPTIMIZATION METHODS & SOFTWARE 2021年 第1期36卷 237-258页
作者: Nguyen, Lam M. Scheinberg, Katya Takac, Martin IBM Res Thomas J Watson Res Ctr Yorktown Hts NY 10598 USA Cornell Univ Sch Operat Res & Informat Engn Ithaca NY USA Lehigh Univ Dept Ind & Syst Engn Bethlehem PA 18015 USA
We develop and analyse a variant of the SARAH algorithm, which does not require computation of the exact gradient. Thus this new method can be applied to general expectation minimization problems rather than only fini... 详细信息
来源: 评论